Antibiotics pp 440-445 | Cite as


  • F. N. Chang
  • B. Weisblum


Lincomycin, an antibiotic produced by Streptomyces lincolnensis var. lincolnensis, has the following structure (Hoeksema et al.,1964).


Minimum Inhibitory Concentration None None Leucine Incorporation Tube Dilution Animal Toxicity Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baglioni, C.: Inhibition of protein synthesis in reticulocytes by antibiotics. Iii. Mechanism of action of sparsomycin. Biochim. et Biophys. Acta 129, 642 (1966).Google Scholar
  2. Barber, M., and P. M. Waterworth: Antibacterial activity of lincomycin and pristinamycin: A comparison with erythromycin. Brit. Med. J. 1964II, 603.Google Scholar
  3. Chang, F. N., D. J. Sm, and B. Weisblum: Lincomycin, an inhibitor of aminoacyl sRna binding to ribosomes. Proc. Natl. Acad. Sci. U.S. 55, 431 (1966).Google Scholar
  4. Chang, F. N., and B. Weisblum: The specificity of lincomycin binding to ribosomes. Biochemistry (1967, in press).Google Scholar
  5. Gray, J. E., A. Purmalis, and E. S. Feenstra: Animal toxicity studies of a new antibiotic, lincomycin. Toxicol. and Appl. Pharmacol. 6, 476 (1964).Google Scholar
  6. Griffith, L. J., W. E. Ostrander, C. G. Mullins, and D. E. BeswIcK: Drug antagonism between lincomycin and erythromycin. Science 147, 746 (1965).PubMedCrossRefGoogle Scholar
  7. Hoeksema, H., B. Bannister, R. D. Birkenmeyer, F. Kagan, B. J. Magerlein, F. A. Mackellear, W. Schroeder, G. Slomp, and R. R. Herr: Chemical studies on lincomycin. I. The structure of lincomycin. J. Am. Chem. Soc. 86, 4223 (1964).CrossRefGoogle Scholar
  8. Hto, E., and J. L. Strominger: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. Iii. Purification and properties of L-lysine adding enzyme. J. Biol. Chem. 239, 210 (1964).Google Scholar
  9. Josten, J. J., and P. M. Allen: The mode of action of lincomycin. Biochem. Biophys. Research Commun. 14, 241 (1964).CrossRefGoogle Scholar
  10. Lewis, C. H. W. Clapp, and J. E. Grady: In vitro and in vivo evaluation of lincomycin a new antibiotic. In: Antimicrobial agents and chemotherapy (M. Finland and G. Savage, eds.), p. 570–582. Michigan: Braun-Brumfield Inc. 1962.Google Scholar
  11. Mason, D. J., and C. Lewis: Biological activity of the lincomycin-related antibiotics. In: Antimicrobial agents and chemotherapy (M. Finland and G. Savage, eds.), p. 7–12. Michigan: Braun-Brumfield Inc. 1964.Google Scholar
  12. Matsuhashi, M., C. P. Dietrich, and J. L. Strominger: Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: Role of sRna and lipid intermediates. Proc. Natl. Acad. Sci. U.S. 54, 587 (1965).Google Scholar
  13. Okamoto, S., and Y. Suzuki: Chloramphenicol-, dihydrostreptomycin, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome “R”. Nature 208, 1301 (1965).PubMedCrossRefGoogle Scholar
  14. Roberts, W. S. L., and J. L. Strominger: Requirement of sRna for L-threonine incorporation into the cell wall glycopeptide in Micrococcus roseus. Federation Proc. 25, 403 (1966).Google Scholar
  15. Suzuka, I., H. Kaji, and A. Kaji: Binding of specific sRna to 30 S ribosomal subunitseffect of 50 S ribosomal subunits. Biochem. Biophys. Research Commun. 21, 187 (1965).CrossRefGoogle Scholar
  16. Vasquez, D.: Binding of chloramphenicol to ribosomes; The effect of a number of antibiotics. Biochim. et Biophys. Acta 114, 277 (1966).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • F. N. Chang
  • B. Weisblum

There are no affiliations available

Personalised recommendations