Antibiotics pp 387-403 | Cite as

The Streptogramin Family of Antibiotics

  • D. Vazquez


The classification of antibiotics in the streptogramin family has been reviewed briefly by Lester Smith (1963). All the antibiotics of this family are closely related in composition, mode of action and antibacterial spectra. Streptogramin itself was first obtained from culture filtrates of a species of streptomyces, now classified as Streptomyces graminofaciens (Charney et al., 1953) and since then other closely related antibiotics have been described, for example, staphylomycin, ostreogrycin, synergistin, mikamycin, pristinamycin and vernamycin. These antibiotics are mixtures of two or more different active compounds and there are numerous reports of the isolation and properties of the individual components. All streptogramins can be placed in two major groups A and B (Table 1). The antibiotics in group A show a marked synergism with those in group B in their activity against Gram-positive bacteria and consequently all the complex antibiotics of this family have a markedly higher activity than the individual components. Viridogrisein, unlike all the other members of the family, is not a complex antibiotic but is included in group B because its chemical structure and properties are related to others in the group. Of the single components of the streptogramin family, viridogrisein is, in general, the most active.


Macrolide Antibiotic Anaerobic Fermentation Cross Resistance Endogenous Respiration Amino Acid Incorporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Actor, P., H. Basch, and W. P. Jambor: Synergistic activity of vernamycins in vitro and in vivo. Bacteriol. Proc. 1963, 94.Google Scholar
  2. Allende, J. E., R. Monro, and F. Lipmann: Resolution of the Escherichia coli aminoacyl-s-RNA transfer factor into two complementary fractions. Proc. Natl. Acad. Sci. U.S. 51, 1211 (1964).CrossRefGoogle Scholar
  3. Arai, M., S. Nakamura, Y. Sakagami, K. Fukuhara, and H. Yonehara: A new antibiotic, mikamycin. J. Antibiotics (Japan), Ser. A 9, 193 (1956).Google Scholar
  4. Arlinghaus, R., J. Shaeffer, and R. Schweet: Mechanism of peptide bond formation in polypeptide synthesis. Proc. Natl. Acad. Sci. U.S. 51, 1291 (1964).CrossRefGoogle Scholar
  5. Arnold, R. B., A. W. Johnson, and A. B. Mauger: The structure of viridogrisein (etamycin). J. Chem. Soc. 1958, 4466.Google Scholar
  6. Ball, S., B. Boothroyd, K. A. Lees, A. H. Raper, and E. Lester Smith: Preparation and properties of an antibiotic complex E 219. Biochem. J. 68, 24P (1958).Google Scholar
  7. Barber, M., and P. M. Waterworth: Antibacterial activity of lincomycin and pristinamycin: A comparison with erythromycin. Brit. Med. J. 1964 II, 603.Google Scholar
  8. Bartz, Q. R., J. Standiford, J. D. Mold, D. W. Johannessen, A. Ryder, A. Maretzki, and T. H. Haskell: Griseoviridin and viridogrisein: isolation and characterization. Antibiotics Ann. 1954/55, 777.Google Scholar
  9. Benazet, F., et C. Cosar: Etude chez l’animal des constituants de la pristinamycine (7293 R.P.). Ann. Inst. Pasteur 109, 281 (1965).Google Scholar
  10. Benazet, F., C. Cosar, M. Dubost, L. JuLou et D. Mancy: Uri nouvel antibiotique, la pristinamycine (7293 R.P.). Semaine hôp. 38, 13 (1962).Google Scholar
  11. Bessell, J., K. H. Fantes, W. Hewitt, P. W. Muggleton, and J. P. R. Tootill: The analysis and evaluation of the synergistic components of antibiotic E 129. Biochem. J. 68, 24P (1958).Google Scholar
  12. Bodansky, M., and M. A. Ondetti: Structure of the vernamycin B group of antibiotics. Antimicrobial Agents and Chemotherapy, p. 360 (1963).Google Scholar
  13. Bodanszky, M., and J. T. Sheehan: Structure of doricin, a peptide related to the vernamycin B group. Antimicrobial Agents and Chemotherapy, p. 38 (1963).Google Scholar
  14. Celmer, W. D., and B. A. Sobin: The isolation of two synergistic antibiotics from a single fermentation source. Antibiotics Ann. 1955/56, 437.Google Scholar
  15. Cercos, A. P.: Effects of etamycin upon seedling growth and chlorophyll production. Phytopathology 54, 741 (1964).Google Scholar
  16. Chabbert, Y. A., et J. F. Acar: Interactions bacteriostatiques et bactericides chez les antibiotiques du groupe de la streptogramine Ann. Inst. Pasteur 107, 777 (1965).Google Scholar
  17. Charney, J., W. P. Fisher, CH. Curran, R. A. Machlowitz, and A. A. Tyteli: Streptogramin, a new antibiotic. Antibiotics & Chemotherapy 3, 1283 (1953).Google Scholar
  18. Cheng, L., S. Van Straten, and J. F. Snell: Metabolic spectra. VI. An evaluation of the synergistic action between PA 114 A and B in vitro. Antibiotics & Chemotherapy 10, 671 (1960).Google Scholar
  19. Davies, J., W. Gilbert, and L. Gorini: Streptomycin, supression, and the code. Proc. Natl. Acad. Sci. U.S. 51, 883 (1964).CrossRefGoogle Scholar
  20. Delpierre, G. R., F. W. Eastwood, G. E. Gream, D. G. I. Kingston, P. S. Sarin, Lord Todd, and D. H. Williams: The structure of ostreogrycin A. Tetrahedron Letters 4, 369 (1966).PubMedCrossRefGoogle Scholar
  21. DE Somer, P., and P. Van DijcK: A preliminary report on antibiotic number 899, a streptogramin-like substance. Antibiotics & Chemotherapy 5, 632 (1955).Google Scholar
  22. Dubost, M., et C. Pascal: Méthodes de dosage des constituants de la pristinamycine dans les liquides biologiques. Ann. Inst. Pasteur 109, 290 (1965).Google Scholar
  23. Eastwood, F. W., R. K. Snell, and L. Todd: Antibiotics of the E 129 (ostreogrycin) complex. Part I. The structure of E 129B. J. Chem. Soc. 1960, 2286.Google Scholar
  24. Elliott, W. H.: The effects of antimicrobial agents on deoxyribonucleic acid polymers. Biochem. J. 86, 562 (1963).PubMedGoogle Scholar
  25. English, A. R., T. J. Mcbridge, and G. Van Halsema: Biologic studies on the PA 114 group of antibiotics. Antibiotics Ann. 1955/56, 422.Google Scholar
  26. Ennis, H. L.: Inhibition of protein synthesis by polypeptide antibiotics. I. Inhibition in intact bacteria. J. Bacteriol. 90, 1102 (1965a).PubMedGoogle Scholar
  27. Ennis, H. L.: Inhibition of protein synthesis by polypeptide antibiotics. II. In vitro protein synthesis. J. Bacteriol. 90, 1109 (1965b).PubMedGoogle Scholar
  28. Garcia-Mendoza, C.: Studies on the mode of action of etamycin (viridogrisein). Biochim. et Biophys. Acta 97, 394 (1965).Google Scholar
  29. Garrod, L. P., and P. M. Waterworth: Behaviour in vitro of some new antistaphylococcal antibiotics. Brit. Med. J. 1956 II, 61.Google Scholar
  30. Gream, G. E.: Structural studies on ostreogrycin A. Ph. D. Thesis, Cambridge University, England 1961.Google Scholar
  31. Heineman, B., A. Gourevitch, J. Lein, D. L. Johnson, M. A. Kaplan, D. Vanas, and I. R. Hooper: Etamycin, a new antibiotic. Antibiotics Ann. 1954/55, 728.Google Scholar
  32. Hobbs, D. C., and W. D. Celmer: Structure of the antibiotics PA 114 B-1 and PA 114 B-3. Nature 187, 598 (1960).PubMedCrossRefGoogle Scholar
  33. Jones, W. F., R. L. Nichols, and M. Finland: Development of resistance and cross-resistance in vitro to erythromycin, carbomycin, spiramycin, oleandomycin and streptogramin. Proc. Soc. Exptl. Biol. Med. 93, 388 (1956).CrossRefGoogle Scholar
  34. Knudsen, M. P., R. W. Sarber, A. S. Schlingman, R. M. Smith, and J. K. Weston: Griseoviridin and viridogrisein: Biologic studies. Antibiotics Ann. 1954/55, 790.Google Scholar
  35. Laskin, A. I., and W. May Chan: Inhibition by vernamycin A of amino acid incorporation in Escherichia coli cell-free systems. Antimicrobial Agents and Chemotherapy, p. 485 (1964).Google Scholar
  36. Laskin, A. I., and W. May Chan: Effects of vernamycins on aminoacyl-transfer RNA binding to Escherichia coli ribosomes. Antimicrobial Agents and Chemotherapy 1965, 321.Google Scholar
  37. Lester Smith, E.: The ostreogrycins. A family of synergistic antibiotics. J. Gen. Microbiol. 33, 111 (1963).Google Scholar
  38. Murat, M., et J. Pellerat: Etude comparative des pouvoirs bactériostatiques et bactéricide de la pristinamycine, de la méthicilline et de la pénicilline sur un certain nombre de souches de staphylocoques et de streptocoques hemolytiques. Ann. Inst. Pasteur 109, 317 (1965).Google Scholar
  39. Nirenberg, M., and P. Leder: RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes. Science 145, 1399 (1964).PubMedCrossRefGoogle Scholar
  40. PreudHomme, J., A. Belloc, Y. Charpentié et P. Tarridec: Un antibiotique formé de deux de composants à synergie d’action: la pristinamycine. Compt. rend. 260, 1309 (1965).Google Scholar
  41. Sarin, P. S.: Structural studies on the antibiotics ostreogrycin A and G. Ph. D. Thesis, Cambridge University, England 1962.Google Scholar
  42. Sheehan, J. C., H. G. Zachau, and W. B. Lawson: The structure of etamycin. J. Am. Chem. Soc. 80, 3349 (1958).CrossRefGoogle Scholar
  43. Suzuka, I., H. Kaji, and A. Kaji: Binding of specific sRNA to 30s subunits. Comparison with the binding to 70s ribosomes. Biochem. Biophys. Research Commun. 21, 187 (1965).CrossRefGoogle Scholar
  44. Tanaka, N., N. Miyairi, K. Watanabe, N. Shinjo, T. Nishimura, and H. Umezawa: Biological studies on mikamycin. II. Laboratory investigations of mikamycin A and mikamycin B. J. Antibiotics (Japan), Ser. A 12, 290 (1959).Google Scholar
  45. Tanaka, N., N. Miyairi, T. Nishimura, and H. Umezawa: Activity of mikamycins, angustmycins and emimycin against antibiotic-resistant staphylococci. J. Antibiotics (Japan), Ser. A 14, 18 (1961).Google Scholar
  46. Tanaka, N., N. Shinjo, N. Miyairi, and H. Umezawa: Biological studies on mikamycin. J. Antibiotics (Japan), Ser. A 11, 127 (1958).Google Scholar
  47. Tanaka, N., H. Yamaki, H. Yamaguchi, and H. Umezawa: Biologic studies On mikamycin. III. Influence of blood on the activity against experimental infections. J. Antibiotics (Japan), Ser. A 15, 28 (1962).Google Scholar
  48. Thomsen, V. F.: The in vitro activity of staphylomycin. Acta Path. Microbiol. Scand. 57, 120 (1963).CrossRefGoogle Scholar
  49. Vanderhaeghe, H., P. Van Duck, G. Parmentier, and P. DE Somer: Isolation and properties of the components of staphylomycin. Antibiotics & Chemotherapy 7, 606 (1957).Google Scholar
  50. Vanderhaeghe, H., and G. Parmentier: The structure of factor S of staphylomycin. J. Am. Chem. Soc. 82, 4414 (1960).CrossRefGoogle Scholar
  51. Van Duck, P., H. Vanderhaeghe, and P. DE Somer: Microbiologic study of the components of staphylomycin. Antibiotics & Chemotherapy 7, 625 (1957).Google Scholar
  52. Vazquez, D.: Antibiotics which affect protein synthesis: The uptake of 14C-chloramphenicol by bacteria. Biochem. Biochys. Research Commun. 12, 409 (1963).CrossRefGoogle Scholar
  53. Vazquez, D.: Uptake and binding of chloramphenicol by sensitive and resistant organisms. Nature 203, 257 (1964a).PubMedCrossRefGoogle Scholar
  54. Vazquez, D.: The mode of action of streptogramin. Ph. D. Thesis, Cambridge University, Cambridge, England 1964 b.Google Scholar
  55. Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Research. Commun. 15, 464 (1964c).CrossRefGoogle Scholar
  56. Vazquez, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim. et Biophys. Acta 144, 277 (1966a).Google Scholar
  57. Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. et Biophys. Acta 114, 289 (1966b).Google Scholar
  58. Vazquez, D.: Studies on the mode of action of the streptogramin antibiotics. J. Gen. Microbiol. 42, 93 (1966c).PubMedCrossRefGoogle Scholar
  59. Vazquez, D.: Mode of action of chloramphenicol and related antibiotics. Symposium Soc. Gen. Microbiol. 16, 169 (1966d).Google Scholar
  60. Verwey, W. F., M. K. West, and A. K. Miller: Laboratory studies of streptogramin. Antibiotics & Chemotherapy 8, 500 (1958).Google Scholar
  61. Videau, D.: La pristinamycine et le phénomène de bactériopause. Ann. Inst. Psteur 108, 602 (1965).Google Scholar
  62. Waring, K. J.: The effect of antimicrobial agents on ribonucleic acid polymerase. Mol. Pharmacol. 1, 1 (1965).PubMedGoogle Scholar
  63. Watanabe, K.: Studies on mikamycin. V. In vitro synergistic action and differential assay of mikamycin components. J. Antibiotics (Japan), Ser. A 13, 62 (1960).Google Scholar
  64. Watanabe, K.: Studies on mikamycin. VII. Structure of mikamycin B. J. Antibiotics (Japan), Ser. A 14, 14 (1961).Google Scholar
  65. Watanabe, T.: Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27, 87 (1963).PubMedGoogle Scholar
  66. Yamaguchi, H.: Action mechanism of mikamycins. I. Effect of mikamycins on protein and nucleic acid metabolisms. J. Antibiotics (Japan), Ser. A 14, 313 (1961).Google Scholar
  67. Yamaguchi, H.: Action mechanism of mikamycins. H. Effect of mikamycins on incorporation of 14C-L-leucine into ribonucleic acid and protein in various microorganisms. J. Antibiotics (Japan), Ser. A 16, 92 (1963a).Google Scholar
  68. Yamaguchi, H.: Action mechanism of mikamycins. III. Further studies on the site of action of mikamycins. J. Antibiotics (Japan), Ser. A 16, 97 (1963b).Google Scholar
  69. Yamaguchi, H., and N. Tanaka: Selective toxicity of mikamycins inhibitors of protein synthesis. Nature 201, 499 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • D. Vazquez

There are no affiliations available

Personalised recommendations