Antibiotics pp 378-386 | Cite as

Erythromycin and Oleandomycin

  • F. E. Hahn


Erythromycin (Fig. 1) is the most important member of a group of antibiotics known as macrolides. Structural characteristics of this group are 1. large lactone rings, 2. keto groups, and 3. amino sugars in glycosidic linkages. The mode of action of erythromycin has been subject to only relatively few studies which have, however, shown that the antibiotic is a specific inhibitor of protein synthesis. Reviews on erythromycin have been published by Forfar and MacCabe (1957) and by Grundy (1964).


Amino Sugar Neisseria Gonorrhoeae Bacillus Anthracis Euglena Gracilis Erythromycin Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. C., P. N. Harris, and K. K. Chen: The toxicity and distribution of “Ilotycin”. J. Am. Pharm. Assoc. Sci. Ed. 41, 555 (1952).CrossRefGoogle Scholar
  2. Anderson, R. C., P. N. Harris, and K. K. Chen: Further toxicological studies with Ilotycin. J. Am. Pharm. Assoc., Sci. Ed. 44, 199 (1955).CrossRefGoogle Scholar
  3. Benigno, P., A. Porro e L. Cima: Azione dell’ossitetraciclina e dell’eritromicina sul metabolismo fosforato dell “Staphilicoccus aureus”. Atti accad. nazl. Lincei 16, 773 (1954).Google Scholar
  4. Brock, T. D., and M. L. Brock: Similarity in mode of action of chloramphenicol and erythromycin. Biochim. et Biophys. Acta 33, 274 (1959).CrossRefGoogle Scholar
  5. Chain, E. B.: Chimica e biochimica du nuovi antibiotici. Giorn. ital. chemioterap. 4, 213 (1957).Google Scholar
  6. Ciak, J., and F. E. Hahn: Mechanism of action of antibiotics. I. Additive action of chloramphenicol and tetracyclines on the growth of Escherichia coli. J. Bacteriol. 75, 125 (1958).PubMedGoogle Scholar
  7. Cook, A. R., and P. E. Thompson: The effects of oleandomycin, carbomycin, and penicillin G on Leptospira icterohaemorrhagiae in vitro and in experimental animals. Antibiotics & Chemotherapy 7, 425 (1957).Google Scholar
  8. English, A. R., and T. J. Mcbride: Triacetyloleandomycin: biological studies. Antibiotics & Chemotherapy 8, 424 (1958).Google Scholar
  9. English, A. R., T. J. Mcbride, G. Van Halsema, and M. Carlozzi: Biologic studies on PA 775, a combination of tetracycline and oleandomycin with synergistic activity. Antibiotics & Chemotherapy 6, 511 (1956).Google Scholar
  10. Erbringer, L.: Erythromycin-induced bleaching of Euglena grazilis. J. Protozool. 9, 373 (1962).CrossRefGoogle Scholar
  11. Erbringer, L.: Apochloroza buniek Euglena grazilis indukovana erythromycinom. Biologia (Bratislava) 18, 371 (1963).Google Scholar
  12. Forfar, J. O., and A. F. Maccabe: Erythromycin, a review. Antibiot. et Chemother. (Basel) 4, 115 (1957).Google Scholar
  13. Garrod, L. P.: The erythromycin group of antibiotics. Brit. med. J. 1957 II, 57.Google Scholar
  14. Goldberg, H. S., and J. T. Logue: Antibiotic sensitivity of leptospira as indicated by loss of motility. Antibiotics & Chemotherapy 6, 19 (1956).Google Scholar
  15. Griffith, R. S., V. C. Stephens, R. N. Wolfe, W. S. Boniece, and C.-C. Lee: Preliminary studies on propionyl erythromycin. Antibiotic Med. & Clin. Therapy 5, 609 (1958).Google Scholar
  16. Grundy, W. E.: The macrolides (erythromycin group). Exptl. Chemoth. Acad. Press 3, 171 (1964).Google Scholar
  17. Haight, T. H., and M. Finland: Observations on mode of action of erythromycin. Proc. Soc. Exptl. Biol. Med. 81, 188 (1952a).CrossRefGoogle Scholar
  18. Haight, T. H., and M. Finland: Resistance of bacteria to erythromycin. Proc. Soc. Exptl. Biol. Med. 81, 183 (1952b).CrossRefGoogle Scholar
  19. Heilman, F. R., W. E. Herrell, W. E. Wellman, and J. E. Geraci: Some laboratory and clinical observations on a new antibiotic, erythromycin (Lotycin). Proc. Staff Meetings Mayo Clinic 27, 285 (1952).Google Scholar
  20. Hobby, G. L., and T. F. Lenert: Observations on the mode of action of oleandomycin. Antibiotics & Chemotherapy 8, 219 (1958).Google Scholar
  21. Hochstein, F. A., H. Els, W. D. Celmer, B. L. Shapiro, and R. B. Woodward: The structure of oleandomycin. J. Am. Chem. Soc. 82, 3225 (1960).CrossRefGoogle Scholar
  22. Iyer, V. N., and A. W. Ravin: Factors influencing recombination and the expression of recombinants during transformation to erythromycin resistance. Vlllth Internat. Congr. for Microbiology, Abstracts, Montreal, Quebec, Canada 1962, Abstract No. A 5. 5, p. 27.Google Scholar
  23. Jones, W. F., R. L. Nichols, and M. Finland: Development of resistance and cross-resistance in vitro to erythromycin, carbomycin, spiramycin, oleandomycin, and streptogramin. Proc. Soc. Exptl. Biol. Med. 93, 388 (1956).CrossRefGoogle Scholar
  24. Julian, G. R.: C14-lysine peptides synthesized in an in vitro Escherichia coli system in the presence of chloramphenicol. J. Mol. Biol. 12, 9 (1965).PubMedCrossRefGoogle Scholar
  25. Mccowen, M. C., M. E. Callender, J. F. Lawlis, and M. C. Brandt: The effects of erythromycin (Ilotycin, Lilly) against certain parasitic organisms. Am. J. Trop. Med. Hyg. 2, 212 (1953).PubMedGoogle Scholar
  26. Mcguire, J. M., R. L. Bunch, R. C. Anderson, H. E. Boaz, E. H. Flynn, H. M. Powell, and J. W. Smith: “Ilotycin” a new antibiotic. Antibiotics & Chemotherapy 2, 281 (1952).Google Scholar
  27. Montes, L. F., J. W. Middleton, and A. Fisher: Hepatic dysfunction and fixed-drug eruption due to triacetyloleandomycin. Lancet 1964 No. 7334, 662.CrossRefGoogle Scholar
  28. Mussgnug, G.: Erythromycin. Arzneimittel-Forsch. 6, 468 (1956).Google Scholar
  29. Nakagawa, H.: Mode of action of erythromycin. Chem. Abstr. 54, 11154a (1960).Google Scholar
  30. Niwa, C.: Transduction of erythromycin-resistance in staphylococcus. Nippon Saigingaku Zasshi 18, 21 (1963).CrossRefGoogle Scholar
  31. Otto, R. H., E. F. Alford, W. E. Grundy, and J. C. Sylvester: Antibiotic bactericidal studies. Bactericidal and bacteriostatic tests with various antibiotics. Antimicrobial Agents Ann. 1960, 104 (1960).Google Scholar
  32. Powell, H. M., W. S. Boniece, R. C. Pittenger, R. L. Stone, and C. G. Gulbertson: Laboratory studies on ‘Ilotycin’. Antibiotics & Chemotherapy 3, 165 (1953).Google Scholar
  33. Robinson, M. M.: Hepatic dysfunction associated with triacetyloleandomycin and propionyl erythromycin ester lauryl sulfate. Am. J. Med. Sci. 243, 502 (1962).PubMedCrossRefGoogle Scholar
  34. Shemyakin, M. M.: Khimia Antibiotikov, Vol. I, Acad. Sci. U.S.S.R., Moscow, 601, 641 (1961).Google Scholar
  35. So, A. G., J. W. Bodley, and E. W. Davie: Influence of environment on the specificity of polynucleotide-dependent amino acid incorporation into polypeptide. Biochemistry 3, 1977 (1964).Google Scholar
  36. Sobin, B. A., A. R. English, and W. D. Celmer: P.A. 105, A new antibiotic. Antibiotics Annual 1954/55, 827 (1955).Google Scholar
  37. Sorensen, O. J., R. A. Fisken, T. F. Reutner, K. Weston, and J. K. Weston: Experimental toxicological studies on oleandomycin. Antibiotics & Chemotherapy 7, 419 (1957).Google Scholar
  38. Szybalski, W.: Genetic studies on microbial cross-resistance to toxic agents. Appl. Microbiol. 2, 57 (1954).PubMedGoogle Scholar
  39. Tanaka, K., and H. Teraoka: Binding of erythromycin to Escherichia coli ribosomes. Biochim. et Biophys. Acta 114, 204 (1966).CrossRefGoogle Scholar
  40. Taubeneck, U.: Susceptibility of Proteus mirabilis and its stable L-forms to erythromycin and other macrolides. Nature 196, 195 (1962).PubMedCrossRefGoogle Scholar
  41. Taubman, S. B., A. G. So, F. E. Young, E. W. Davie, and J. W. Corcoran: Effect of erythromycin on protein biosynthesis in Bacillus subtilis. Antimicrobial Agents and Chemotherapy 1963, 395 (1963a).Google Scholar
  42. Taubman, S. B., F. E. Young, and J. W. Corcoran: Antibiotic glycosides. IV. Studies on the mechanism of erythromycin resistance in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S. 50, 955 (1963b).CrossRefGoogle Scholar
  43. Vazquez, D.: Antibiotics which affect protein synthesis: the uptake of 14C-chloramphenicol by bacteria. Biochem. Biophys. Research Commun 12, 409 (1963).CrossRefGoogle Scholar
  44. Vazquez, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim. et Biophys. Acta 114, 277 (1966a).CrossRefGoogle Scholar
  45. Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. et Biophys. Acta 114, 289 (1966b).CrossRefGoogle Scholar
  46. Walter, A. M., and L. Heilmeyer: Antibiotika-Fibel. Stuttgart: Georg Thieme 1965.Google Scholar
  47. Waterworth, P. M.: The antibacterial properties of leucomycin. Antibiotics & Chemoth. 10, 101 (1960).Google Scholar
  48. Weisberger, A. S., S. Wolfe, and S. Armentrout: Inhibition of protein synthesis in mammalian cell-free systems by cloramphenicol. J. Exptl. Med. 120, 161 (1964).CrossRefGoogle Scholar
  49. Welch, H.: Opening remarks. Antibiotics Ann. 1956/57, 1 (1957).Google Scholar
  50. Welch, H., C. N. Lewis, H. I. Weinstein, and B. B. Boeckman: Severe reactions to antibiotics. A nationwide survey. Antibiotic Med. & Clin. Therapy 4, 800 (1957).Google Scholar
  51. Wiley, P. F., K. Gerzon, E. H. Flynn, M. V. Sigal, O. Weaver, U. C. Quarck, R. R. Chauvette, and R. Monahan: Erythromycin. X. Structure of erythromycin. J. Am. Chem. Ass. 79, 6062 (1957).CrossRefGoogle Scholar
  52. Wolfe, A. D., and F. E. Hahn: Erythromycin: mode of action. Science 143, 1445 (1964).PubMedCrossRefGoogle Scholar
  53. Wolfe, A. D., and F. E. Hahn: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerizing system and its binding to bacterial ribosome. Biochim. et Biophys. Acta 95, 146 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • F. E. Hahn

There are no affiliations available

Personalised recommendations