Advertisement

Antibiotics pp 366-377 | Cite as

Macrolide antibiotics — Spiramycin, Carbomycin, Angolamycin, Methymycin and Lancamycin

  • D. Vazquez

Abstract

The term macrolide has been applied to members of a group of structurally related antibiotics produced by species of streptomyces. All macrolide antibiotics (Woodward, 1957) contain a large lactone ring (aglycone of 12 to 22 atoms) which contain few double bonds and no nitrogen atoms; they have one or more sugars which can be amino sugars, non-nitrogenous sugars or both. In the widest sense however, the term macrolide has been ascribed to all the antibiotics containing a large lactone ring; in this sense the polyene antibiotic and antibiotics of streptogramin A and streptogramin B groups can be also termed macrolides. This article will be restricted to the “classical” macrolides of Woodward (1957) and related compounds discovered after 1957.

Keywords

Inhibit Protein Synthesis Amino Sugar Macrolide Antibiotic Bacillus Megaterium Cross Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anliker, R., u. K. Gubler: Stoffwechselprodukte von Actinomyceten. Die Konstitution des Kromycins ein Abbauprodukt des Pikromycins. Hely. Chim. Acta 40, 1768 (1957).CrossRefGoogle Scholar
  2. Brock, T. D., and M. L. Brock: Similarity in mode of action of chloramphenicol and erythromycin. Biochim. et Biophys. Acta 33, 274 (1959).Google Scholar
  3. Brockmann, H., u. W. Henkel: Pikromycin ein neues Antibiotikum aus Actinomyceten. Naturwissenschaften 37, 138 (1950).CrossRefGoogle Scholar
  4. Brockmann, H., u. R. Oster: Antibiotica aus Actinomyceten. Xxxviii. Zur Konstitution des Pikromycins und Kromycins (Pikromycin, VI). Chem. Ber. 90, 605 (1957).CrossRefGoogle Scholar
  5. Celmer, W. D.: Macrolide stereochemistry. I. The total absolute configuration of oleandomycin. J. Am. Chem. Soc. 87, 1797 (1965a).CrossRefGoogle Scholar
  6. Celmer, W. D.: Macrolide stereochemistry. II. Configurational assignments at certain centers in various macrolide antibiotics. J. Am. Chem. Soc. 87, 1799 (1965b).PubMedCrossRefGoogle Scholar
  7. Celmer, W. D.: A configurational model for macrolide antibiotics. J. Am. Chem. Soc. 87, 1801 (1965c).PubMedCrossRefGoogle Scholar
  8. Celmer, W. D.: Basic stereochemical research topics in the macrolide antibiotics. In: Biogenesis of antibiotic substances, ed by Z. VanÉK and Z. HosTÄLÉK. New-York and London: Academic Press 1965c.Google Scholar
  9. Chabbert, Y.: Antagonisme in vitro entre l’erythromycine et la spiramycine. Ann. Inst. Pasteur 90, 787 (1956).Google Scholar
  10. Corbaz, R., L. Ettlinger, E. GÄUmann, W. Keller-Schierlein, L. Neipp, V. Prelog, P. Reusser u. H. ZÄHner: Stoffwechselprodukte von Actinomyceten. Angolamycin. Helv. Chim. Acta 38, 1202 (1955).CrossRefGoogle Scholar
  11. Coleman, V. R., J. B. Gunnison, and E. Jawetz: Participation of erythromycin and carbomycin in combined antibiotic action in vitro. Proc. Soc. Exptl. Biol. Med. 83, 668 (1953).CrossRefGoogle Scholar
  12. Djerassi, C., and O. Halpern: Macrolide antibiotics. Vii. The structure of neomethymycin. Tetrahedron 3, 255 (1958).CrossRefGoogle Scholar
  13. Djerassi, C., and J. A. Zderic: The structure of the antibiotic methymycin. J. Am. Chem. Soc. 78, 6390 (1956).CrossRefGoogle Scholar
  14. Donin, M. N., J. Pagano, J. D. Dutcher, and C. M. Mckee: Methymycin, a new crystalline antibiotic. Antibiotics Ann. 1953/54, 179.Google Scholar
  15. English, A. R., M. F. Field, S. R. Szendy, N. J. Tagliani, and R. A. Fitts: Magnamycin. I. In vitro studies. Antibiotics Chemotherapy 2, 678 (1952).Google Scholar
  16. Finland, M., C. Wilcox, and E. M. Purcell: Cross resistance to antibiotics: Effect of exposures of bacteria to carbomycin or erythromycin in vivo. Proc. Soc. Exptl. Biol. Med. 81, 725 (1952).CrossRefGoogle Scholar
  17. FusIllo, M. H., H. E. NoYes, E. J. Pulaski, and J. Y. S. ToM: Antimicrobial spectrum and cross resistance studies of erythromycin and carbomycin. Antibiotics Chemotherapy 3, 581 (1953).Google Scholar
  18. Gardocki, J. F., S. Y. P’AN, A. L. Rapuzzi, G. M. Fanelli, and E. K. Timmens: Magnamycin: toxicity in experimental animals Antibiotics Chemotherapy 3, 55 (1953).Google Scholar
  19. Garrod, L. P., and P. M. Waterworth: Behaviour in vitro of some new antistaphylococcal antibiotics. Brit. Med. J. 1956, II 61.CrossRefGoogle Scholar
  20. Gastal, R.: Action de la spiramycine sur l’infection expérimentale de la souris par H. pertussis. Ann. Inst. Pasteur 94, 636 (1958).Google Scholar
  21. Umann, E., R. HÜTter, W. Keller-Schierlein, L. Neipp, V. Prelog u. H. ZÄHner: Stoffwechselprodukte von Actinomyceten. Rely. Chim. Acta 43, 601 (1960).CrossRefGoogle Scholar
  22. Hochstein, F. A., and K. Murai: Magnamycin B, a second antibiotic from Streptomyces halstedii. J. Am. Chem. Soc. 76, 5080 (1954).CrossRefGoogle Scholar
  23. HsIE, J.-Y., R. Kotz, and W. Nusser: Analysis of cross resistance to erythromycin and carbomycin in Micrococcus pyogenes var. aureus. Antibiotics Ann. 1955/56, 773.Google Scholar
  24. Hudson, D. G., G. M. Yoshihara, and W. M. M. Kirby: Spiramycin. Clinical and laboratory studies. A.M.A. Arch. Internal Med. 97, 57 (1956).CrossRefGoogle Scholar
  25. Jones, W. F., R. L. Nichols, and M. Finland: Development of resistance and cross-resistance in vitro to erythromycin, carbomycin, spiramycin, oleandomycin and streptogramin. Proc. Soc. Exptl. Biol. Med. 93, 388 (1956).CrossRefGoogle Scholar
  26. Jordan, D. C.: Effect of chalcomycin on protein synthesis by Staphylococcus aureus. Can. J. Microbiol. 9, 129 (1929).CrossRefGoogle Scholar
  27. Lutz, A., O. Grooten et J. Hofferer: Evolution et modifications de la résistance des staphylocoques pathogènes à six antibiotiques usuels de 1950 à 1956. L’action comparée in vitro de l’érythromycine, de la magnamycine, de la spiramycine, de la novobiocine (albamycine) et de l’oléandomycine. Ann. Inst. Pasteur 92, 778 (1957).Google Scholar
  28. Maniar, A. C., et L. Eidus: Un des facteurs influençant l’action des antibiotiques. Ann. Inst. Pasteur 101, 887 (1961).Google Scholar
  29. Mathieu, N., et M. Faguet: Activité in vitro de la spiramycine en association avcc la tétracycline, l’érythromycine, la pénicilline, la streptomycine sur la multiplication de Staphylococcus aureus étudiée au microbiophotomètre. Ann. Inst. Pasteur 94, 69 (1958).Google Scholar
  30. Miyake, A., H. Iwasaki, T. Takewata, M. Shibata, and K. Nakazawa: Production of tertiomycin A by Streptomyces albireticuli. J. Antibiotics (Japan), Ser. A 12, 59 (1959).Google Scholar
  31. Morin, R. B., and M. Gorman: The partial structure of tylosin, a macrolide antibiotic. Tetrahedron Letters, p. 2339 (1964).Google Scholar
  32. Pagano, J. F., M. J. Weinstein, and C. M. McKee: An anti-rickettsial antibiotic from a streptomycete, M-4209. I. Biological caracterizations. Antibiotics Chemotherapy 3, 899 (1953).Google Scholar
  33. Paul, R., et S. Tchelitcheff: Structure de la spiramycine. VI. Etablissement de la formule développée. Bull. soc. chim. France, p. 650 (1965).Google Scholar
  34. Pinnert-Sindico, S., L. Ninet, J. PreudHomme, and C. Cosar: A new antibiotic, spiramycin. Antibiotics Ann. 1954/55, 724.Google Scholar
  35. Prelog, V., A. M. Gold, G. Talbot H. A. Zamojski: Stoffwechselprodukte von Actinomyceten. Über die Konstitution der Narbomycins. Hely. Chim. Acta 45, 4 (1962).CrossRefGoogle Scholar
  36. Seneca, H., and D. Ides: The effect of magnamycin on protozoa and spermatozoa. Antibiotics Chemotherapy 3, 117 (1953).Google Scholar
  37. Suzuka, I., H. Kaji, and A. Kaji: Binding of specific Rna to 30 S subunits. Comparison with the binding to 70 s ribosomes. Biochem. Biophys. Research Commun. 21, 187 (1965).CrossRefGoogle Scholar
  38. Tanner, F. W., A. R. English, T. M. Lees, and J. B. Routien: Some properties of magnamycin, a new antibiotic. Antibiotics Chemotherapy 2, 441 (1952).Google Scholar
  39. Taubman, S. B., F. E. Young, and J. W. Corcoran: Antibiotic glycosides. IV. Studies on the mechanism of erythromycin resistance in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S. 50, 955 (1963).CrossRefGoogle Scholar
  40. Umezawa, H.: Recent advances in chemistry and biochemistry of antibiotics. Tokyo 1964. Microbial Chemistry Research Foundation.Google Scholar
  41. Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Research Commun. 15, 464 (1964).CrossRefGoogle Scholar
  42. Vazquez, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim. et Biophys. Acta 144, 277 (1966a).Google Scholar
  43. VazquEZ, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. et Biophys. Acta 114, 289 (1966b).Google Scholar
  44. Videau, D.: Sur le mode d’action des antibiotiques. Cas particulier de la spiramycine. Ann. Inst. Pasteur 94, 709 (1958).Google Scholar
  45. Watanabe, T.: Studies on leucomycin. IV. Isolation of mycaminose from the acid hydrolysate. Bull. Chem. Soc. Japan 34, 15 (1961).CrossRefGoogle Scholar
  46. Watanabe, T., H. Nishida, J. Abe, and K. Satake: Studies on leucomycin. Bull. Chem. Soc. Japan 33, 1104 (1960).CrossRefGoogle Scholar
  47. Wong, S. C., C. C. James, and A. Finlay: The action of carbomycin (magnamycin) on some viral and rickettsial infectial infections. Antibiotics Chemotherapy 3, 741 (1953).Google Scholar
  48. Woodward, R. B.: Struktur und Biogenese der Makrolide. Eine neue Klasse von Naturstoffen. Angew. Chem. 69, 50 (1957).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • D. Vazquez

There are no affiliations available

Personalised recommendations