Skip to main content

Chloramphenicol

  • Chapter
Antibiotics

Abstract

Chloramphenicol is of unique interest for a variety of reasons. It was the first broad-spectrum antibiotic introduced into medicinal use. It also was the first antibiotic to be completely synthesized by methods of organic chemistry and is still the only antibiotic which is industrially produced by chemical synthesis rather than by fermentation. The relative simplicity of the chemical molecule of chloramphenicol has rendered possible the synthesis of a large number of derivatives of the antibiotic, and the microbiological and biochemical study of many of these compounds has resulted in detailed theories of the relationships between structure and biological activity in the chloramphenicol series of compounds. Finally, the specific action of chloramphenicol upon microbial protein synthesis does not only present by itself an intriguing research problem in biochemistry and molecular biology but has rendered the antibiotic a versatile tool in experimental studies in which it is desired to block protein synthesis specifically in order to investigate other processes, notably the control and regulation of nucleic acid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allende, J. E., R. Monro, and F. Lipmann: Resolution of the Escherichia coli aminoacyl soluble ribonucleic acid transfer factor into two complementary fractions. Proc. Natl. Acad. Sci. U.S. 51, 1211 (1964).

    CAS  Google Scholar 

  • Allison, J. L., R. E. Hartman, R. S. Hartman, A. D. Wolfe, J. Ciak, and F. E. Hahn: Mode of action of chloramphenicol. Vii. Growth and multiplication of Escherichia coli in the presence of chloramphenicol. J. Bact. 83, 609 (1962).

    PubMed  CAS  Google Scholar 

  • Ambrose, C. T., and A. H. Coons: Studies on antibody production. Viii. The inhibitory effect of chloramphenicol on the synthesis of antibody in tissue culture. J. Exptl. Med. 117, 1075 (1963).

    CAS  Google Scholar 

  • Arlinghaus, R., J. Shaeffer, and R. Schweet: Mechanism of peptide bond formation in polypeptide synthesis. Proc. Natl. Acad. Sci. U.S. 51, 1291 (1964).

    CAS  Google Scholar 

  • Aronson, A. I., and S. Spiegelman: On the nature of the ribonucleic acid synthesized in the presence of chloramphenicol. Biochim. et Biophys. Acta 53, 84 (1961a).

    CAS  Google Scholar 

  • Aronson, A. I., and S. Spiegelman: Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. Biochim. et Biophys. Acta 53, 70 (1961b).

    CAS  Google Scholar 

  • Bani6, S.: Transduction to penicillin and chloramphenicol resistance in Salmonella typhimurium. Genetics 44, 449 (1959).

    Google Scholar 

  • Bergmann, E. D., and S. Sicher: Mode of action of chloramphenicol. Nature 170, 931 (1952).

    PubMed  CAS  Google Scholar 

  • Broadbent, D., and D. A. Terry: Effect of chloramphenicol on a fungus. Nature 182, 1107 (19 58).

    Google Scholar 

  • Brock, T. D.: C hloramphenicol. Bacteriol. Rev. 25, 32 (1961).

    PubMed  CAS  Google Scholar 

  • Brock, T. D.: Chloramphenicol. In: Experimental Chemotherapy, vol. Iii, p. 119. Academic Press 1964.

    Google Scholar 

  • Bush, M. T., O. Touster, and J. E. Brockman: The production of ß-nitropropionic acid by a strain of Aspergillus /lavas. J. Biol. Chem. 188, 685 (1951).

    PubMed  CAS  Google Scholar 

  • Cavalli, L. L., and G. A. Maccacaro: Chloromycetin resistance in E. coli, a case of quantitative inheritance in bacteria. Nature 166, 991 (1950).

    PubMed  CAS  Google Scholar 

  • Cavalli, L. L., and G. A. Maccacaro: Polygenic inheritance of drug-resistance in the bacterium, Escheyichia coli. Heredity 6, 311 (1952).

    Google Scholar 

  • Checchi, S.: Sulla tossicita degli antipodi ottici e del composto racemico del cloramfenicolo sui topolini per somministrazione gastrica. Arch. ital. sc. farmacol. 3, 3 (1950).

    Google Scholar 

  • Ciak, J., and F. E. Hahn: Mechanisms of action of antibiotics. I. Additive action of chloramphenicol and tetracyclines on the growth of Escherichia coli. J. Bact. 75, 125 (1958).

    PubMed  CAS  Google Scholar 

  • Coffey, G. L., J. L. Schwab, and J. Ehrlich: In vitro studies of bacterial resistance to chloramphenicol (chloromycetin). J. Infectious Diseases 87, 142 (1950).

    CAS  Google Scholar 

  • Controulis, J., M. C. Rebstock, and H. M. Crooks: Chloramphenicol (Chloromycetin). V. Synthesis. J. Am. Chem. Soc. 71, 2463 (1949).

    CAS  Google Scholar 

  • Dann, O., H. Ulrich u. E. F. MÖLler: Ãœber die Bedeutung der Nitrogruppe im Chloromycetin. Z. Naturforsch. 5, 446 (1950).

    Google Scholar 

  • Das, H., A. Goldstein, and L. Kanner: Inhibition by chloramphenicol of the growth of nascent protein chains in Escheyichia coli. J. Mol. Pharm. 2, 158 (1966).

    CAS  Google Scholar 

  • Davis, B. D., and D. S. Feingold: Antimicrobial agents: mechanism of action and use in metabolic studies. In: The Bacteria (ed. Gunsalus), vol. 4, p. 343. 1962.

    Google Scholar 

  • Demoss, J. A., and G. D. Novelli: An amino acid dependent exchange between inorganic pyrophosphate and Atp in microbial extracts. Biochim. et Biophys. Acta 18, 592 (1955).

    CAS  Google Scholar 

  • Djordjevic, B., and W. Szybalski: Genetics of human cell lines. Iii. Incorporation of 5-bromo-and 5-iododeoxyuridine into the Dna of human cells and its effect on radiation sensitivity. J. Exptl. Med. 112, 509 (1960).

    CAS  Google Scholar 

  • Dresden, M. H., and M. B. Hoagland: Effects of chloramphenicol on messenger-ribosome interactions in E. coli. Federation Proc. 25, 582 (1966).

    Google Scholar 

  • Dubin, D. T., and A. T. Elkort: Some abnormal properties of chloramphenicol Rna. J. Mol. Biol. 10, 508 (1964).

    PubMed  CAS  Google Scholar 

  • Dunitz, J. D.: The crystal structure of chloramphenicol and bromamphenicol. J. Am. Chem. Soc. 74, 995 (1952).

    CAS  Google Scholar 

  • Eagle, H., and G. E. Foley: Cytotoxicity in human cell cultures as a primary screen for the detection of anti-tumor agents. Cancer Research 18, 1017 (1958).

    PubMed  CAS  Google Scholar 

  • Ehrlich, J., Q. R. Bartz, R. M. Smith, D. A. Joslyn, and P. R. Burkholder: Chloromycetin, a new antibiotic from a soil actinomycete. Science 106, 417 (1947).

    PubMed  CAS  Google Scholar 

  • Ehrlich, J., L. E. Anderson, H. L. Coffey, and D. Gottlieb: Streptomyces venezuelae: soil studies. Antibiotics Chemotherapy 2, 595 (1952).

    CAS  Google Scholar 

  • Ehrlich, J., L. E. Anderson, G. L. Coffey, and D. Gottlieb: Streptomyces venezuelae: Further soil studies. Antibiotics Chemotherap 3, 1141 (1953).

    CAS  Google Scholar 

  • Fan, D. P., A. Higa, and C. Levinthal: Messenger Rna decay and protection. J. Mol. Biol. 8, 210 (1964).

    PubMed  CAS  Google Scholar 

  • Fassin, W., R. Hengel u. P. Klein: Bakteriostase und Bakterizidie als Alternativen des antibakteriellen Chloramphenicoleffektes. Z. Hyg. Infektionskrankh. 141, 363 (1955).

    CAS  Google Scholar 

  • Follette, J. H., P. M. Shugarman, J. Reynolds, W. N. Valentine, and J. S. Lawrence: The effect of chloramphenicol and other antibiotics on Leukocyte respiration. Blood 11, 234 (1956).

    PubMed  CAS  Google Scholar 

  • Fusillo, M. H., J. F. Metzger, and D. M. Kuhns: Effect of chloromycetin and streptomycin on embryonic tissue growth in in vitro tissue culture. Proc. Soc. Exptl. Biol. Med. 79, 376 (1952).

    CAS  Google Scholar 

  • Gale, E. F.: Mechanism of antibiotic action. Pharmacol. Rev. 15, 481 (1963).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493 (1953).

    PubMed  CAS  Google Scholar 

  • Ganoza, M. C., and T. Nakamoto: Studies on the mechanism of polypeptide chain termination in cell-free extracts of E. coli. Proc. Natl. Acad. Sci. U.S. 55, 162 (1966).

    CAS  Google Scholar 

  • Gibson, F., M. J. Jones, and H. Teltscher: Effect of antibiotics on indole synthesis by Escherichia coli 7–4. Nature 176, 164 (1955).

    PubMed  CAS  Google Scholar 

  • Gibson, F., and B. Mcdougall: The effect of chloramphenicol and oxytetracycline on the formation of intermediates in tryptophan biosynthesis. Australian J. Exptl. Biol. Med. Sci. 39, 171 (1961).

    CAS  Google Scholar 

  • Gibson, F., B. Mcdougall, M. J. Jones, and H. Teltscher: The action of antibiotics on indole synthesis by cell suspensions of Escherichia coli. J. Gen. Microbiol. 15, 446 (1956).

    PubMed  CAS  Google Scholar 

  • Gocke, T. M., and M. Finland: Development of chloramphenicol-resistant and chloramphenicol-dependent variants of a strain of Klebsiella pneumoniae. Proc. Soc. Exptl. Biol. Med. 74, 824 (1950).

    CAS  Google Scholar 

  • Goldberg, I. H.: Mode of action of antibiotics. H. Drugs affecting nucleic acid and protein synthesis. Am. J. Med. 39, 722 (1965).

    CAS  Google Scholar 

  • Goodgal, S. H., and N. E. Melechen: Synthesis of transforming Dna in the presence of chloramphenicol. Biochem. Biophys. Research Commun. 3, 114 (1960).

    CAS  Google Scholar 

  • Gordon, J., H. C. Bowman, and L. A. Isaksson: In vivo inhibition of Rna methylation in the presence of chloramphenicol. J. Mol. Biol. 9, 831 (1964).

    PubMed  CAS  Google Scholar 

  • Gros, F., and F. Gros: Rôle des acides amines dans la synthese des acides nucléiques chez Escherichia coli. Exptl. Cell Res. 14, 104 (1958).

    PubMed  CAS  Google Scholar 

  • Hahn, F. E.: Actions of antibiotics on protein synthesis. Proc. Iii. Intern. Congr. Chemotherapy 1964, p. 215.

    Google Scholar 

  • Hahn, F. E., J. E. Hayes, C. L. Wisseman, H. E. Hopps, and J. E. Smadel: Mode of action of chloramphenicol. VI. Relation between structure and activity in the chloramphenicol series. Antibiotics Chemotherapy 6, 531 (1956).

    CAS  Google Scholar 

  • Hahn, F. E., M. Schaechter, W. S. Ceglowski, H. E. Hopps, and J. Ciak: Interrelations between nucleic acid and protein biosynthesis. I. Synthesis and fate of bacterial nucleic acids during exposure to, and recovery from the action of chloramphenicol. Biochim. et Biophys. Acta 26, 469 (1957).

    CAS  Google Scholar 

  • Hahn, F. E., and C. L. Wisseman: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exptl. Biol. Med. 76, 533 (1951).

    CAS  Google Scholar 

  • Hahn, F. E., C. L. Wisseman, and H. E. HoPps: Mode of action of chloramphenicol. Iii. Action of chloramphenicol on bacterial energy metabolism. J. Bact. 69, 215 (1955).

    PubMed  CAS  Google Scholar 

  • Hahn, F. E., and A. D. Wolfe: Mode of action of chloramphenicol. Viii. Resemblance between labile chloramphenicol-Rna and Dna of Bacillus cereus. Biochem. Biophys. Research Commun. 6, 464 (1962).

    CAS  Google Scholar 

  • Hancock, R., and J. T. Park: Cell-wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature 181, 1050 (1958).

    PubMed  CAS  Google Scholar 

  • Hopps, H. E., E. B. Jackson, J. X. Danauskas, and J. E. Smadel: Study on the growth of rickettsiae. IV. Effect of chloramphenicol and several metabolic inhibitors on the multiplication of Rickettsia tsutsugamushi in tissue culture cells. J. Immunol. 82, 172 (1959).

    PubMed  CAS  Google Scholar 

  • Hopps, H. E., C. L. Wisseman, and F. E. Hahn: Mode of action of chloramphenicol. V. Effect of chloramphenicol on polysaccharide synthesis by Neisseria perlava. Antibiotics Chemotherapy 4, 857 (1954).

    CAS  Google Scholar 

  • Hopps, H. E., C. L. Wisseman, F. E. Hahn, J. E. Smadel, and R. Ho: Mode of action of chloramphenicol. IV. Failure of selected natural metabolites to reverse antibiotic action. J. Bact. 72, 561 (1956).

    PubMed  CAS  Google Scholar 

  • Horiuchi, T., S. Sunakawa, and D. Mizuno: Stability of nucleic acid synthesized in the presence of chloramphenicol in E. coli B under growing and resting conditions. J. Biochem. (Japan) 45, 875 (1958).

    CAS  Google Scholar 

  • Horowitz, J., A. Lombard, and E. Chargaff: Aspects of the stability of a bacterial ribonucleic acid. J. Biol. Chem. 233, 1517 (1958).

    PubMed  CAS  Google Scholar 

  • Huang, M., D. R. Biggs, G. D. Clark-Walter, and A. W. Linnane: ChlOramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim. et Biophys. Acta 114, 434 (1966).

    CAS  Google Scholar 

  • Jardetzky, O.: Studies on the mechanism of action of chloramphenicol. I. The conformation of Chloramphenicol in solution. J. Biol. Chem. 238, 2498 (1963).

    CAS  Google Scholar 

  • Jardetzky, O., and G. R. Julian: Chloramphenicol inhibition of polyuridylic acid binding to E. coli ribosomes. Nature 201, 396 (1964).

    Google Scholar 

  • Julian, G. R.: C14-Lysine peptides synthesized in an in vitro Escherichia coli system in the presence of chloramphenicol. J. Mol. Biol. 12, 9 (1965).

    PubMed  CAS  Google Scholar 

  • Katagiri, H., Y. SuzuKI, and T. Tochikura: Studies on the action of antibiotics on bacterial metabolism V. On a site of the action of chloramphenicol. J. Antibiotics (Japan), Ser. A, 13, 309 (1960).

    Google Scholar 

  • Kellenberger, E., K. G. Lark, and A. Bolle: Amino acid dependent control of Dna synthesis in bacteria and vegetative phage. Proc. Natl. Acad. Sci. U.S. 48, 1860 (1962).

    CAS  Google Scholar 

  • Kellenberger, E., A. Ryter, and J. Sechaud: Electron microscope study of Dna-containing plasms. II. Vegetative and mature phage Dna as compared with normal bacterial nucleoids in different physiological states. J. Biophys. Biochem. Cytol. 4, 671 (1958).

    PubMed  CAS  Google Scholar 

  • Kent, S. P., E. S. Tucker, and A. Taranenko: The toxicity of chloramphenicol in newborn versus adult mice. A. M. A. J. Diseases Children 100, 400 (1960).

    CAS  Google Scholar 

  • Kent, S. P., and G. L. Wideman: Prophylactic antibiotic therapy in infants born after premature rupture of membranes. J. Am. Med. Ass. 171, 1199 (1959).

    CAS  Google Scholar 

  • Korotyaev, A. I.: Mechanism of action of levomycetin on pyruvate consumption by resting cells of Escherichia coli (Bacterium coli). Mikrobilogija 30, 42 (1961).

    Google Scholar 

  • Korotyaev, A. I.: The effect of levomycetin (L-chloramphenicol) on Escherichia coli enzyme systems, catalyzing the pyruvate metabolism. Biokhimiya 27, 120 (1962)

    Google Scholar 

  • Kroon, A. M.: Protein synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beef-heart mitochondria and fractions derived from them by sonic oscillation. Biochim. et Biophys. Acta 72, 391 (1963).

    CAS  Google Scholar 

  • Kucan, Z., and F. Lipmann: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. Biol. Chem. 239, 516 (1964).

    PubMed  CAS  Google Scholar 

  • Kurland, C. G., and O. Maaloe: Regulation of ribosomal and transfer Rna synthesis. J. Mol. Biol. 4, 193 (1962).

    PubMed  CAS  Google Scholar 

  • Kurland, C. G., M. Nomura, and J. D. Watson: The physical properties of the chloromycetin particles. J. Mol. Biol. 4, 388 (1962).

    PubMed  CAS  Google Scholar 

  • Lacks, S., and F. Gros: A metabolic study of the Rna-amino acid complexes in Escherichia coli. J. Mol. Biol. 1, 301 (1959).

    CAS  Google Scholar 

  • Lark, K. G.: Cellular control of Dna biosynthesis. In: Molecular Genetics (J. H Taylor, ed.). Academic Press 1963.

    Google Scholar 

  • Lee, K. H., Y. O. Yuzuriha, and J. J. Eiler: Studies on cell growth and cell division. II. Selective activity of chloramphenicol and azaserine on cell growth and cell division. J. Am. Pharm. Assoc., Sci. Ed. 48, 470 (1959).

    Google Scholar 

  • Lepine, P., G. Barski, and J. Maurin: Action of chloromycetin and of aureomycin on normal tissue cultures. Proc. Soc. Exptl. Biol. Med. 73, 252 (1950).

    CAS  Google Scholar 

  • Levi, I., H. Blondal, and E. Lozinski: Serine derivative with antitumor activity. Science 131, 666 (1960).

    PubMed  CAS  Google Scholar 

  • Long, L. M., and H. D. Troutman: Chloromycetin. Synthesis of alpha-dichloroacetamido-beta-hydroxy-p-nitro-propiophenone. J. Am. Chem. Soc. 73, 481 (1951).

    CAS  Google Scholar 

  • Loomis, W. F.: On the mechanism of action of aureomycin. Science 111, 474 (1950).

    PubMed  CAS  Google Scholar 

  • Maaloe, O.: Role of protein synthesis in the Dna replication cycle in bacteria. J. Cellular Comp. Physiol. 62, Suppl. 1, 31 (1963).

    Google Scholar 

  • Mager, J.: Chloramphenicol and chlortetracycline inhibition of amino acid incorporation into proteins in a cell-free system from Tetrahymena pyriformis. Biochim. et Biophys. Acta 38, 150 (1960).

    CAS  Google Scholar 

  • Mandelstam, J., and H. J. Rogers: The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem. J. 72, 654 (1959).

    PubMed  CAS  Google Scholar 

  • Mandelstam, J., and H. J. Rogers: Chloramphenicol-resistant incorporation of amino-acids into staphylococci and cell-wall synthesis. Nature 181, 956 (1958).

    PubMed  Google Scholar 

  • Maxwell, R. E., and V. S. Nickel: The antibacterial activity of the isomers of chloramphenicol. Antibiotics Chemotherapy 4, 289 (1954).

    CAS  Google Scholar 

  • Mcdougall, B., and F. Gibson: The effect of the isomers of chloramphenicol on growth and indole synthesis by Escherichia coli 7–4. Australian J Exptl. Biol. 36, 245 (1958).

    CAS  Google Scholar 

  • Mclean, I. W., J. L. Schwab, A. B. Hillegas, and A. S. Schlingman: Susceptibility of micro-organisms to chloramphenicol (chloromycetin). J. Clin. Invest. 18, 953 (1949).

    Google Scholar 

  • Mentzer, C., P. Meunier et L. MoLho-Lacroix: Faits de synergie et d’antagonisme entre la chloromycetine et divers amino-acides vis-a-vis de cultures d’E. coli. Compt. rend. soc. biol. 230, 241 (1950).

    CAS  Google Scholar 

  • Midgley, J. E. M.: The kinetics of ribonucleic acid synthesis in Escherichia coli. Biochim. et Biophys. Acta 68, 354 (1963).

    CAS  Google Scholar 

  • Midgley, J. E. M., and B. J. Mccarthy: The synthesis and kinetic behavior of deoxyribonucleic acid-like ribonucleic acid in bacteria. Biochim. et Biophys. Acta 61, 696 (1962).

    CAS  Google Scholar 

  • MoLho, D., et L. MoLho-Lacroix: Etude comparée de l’antagonisme entre quelques dérives de la phenylalanine et chloromycetine, la ß-thienylalanine et la ß-phenylsenne. Bull. soc. chim. biol. 34, 99 (1952).

    Google Scholar 

  • Nakada, D., and B. Magasanik: The roles of inducer and catabolite repressor in the synthesis of ß-galactosidase by Escherichia coli. J. Mol. Biol. 8, 105 (1964).

    PubMed  CAS  Google Scholar 

  • Nakada, D., and F. J. Ryan: Replication of deoxyribonucleic acid in non-dividing bacteria. Nature 189, 398 (1961).

    PubMed  CAS  Google Scholar 

  • Nakamoto, T., T. W. Conway, J. E. Allende, G. J. Spyrides, and F. Lipmann: Formation of peptide bonds-I peptide formation from aminoacyl-s-Rna. Cold Spring Harbor Symposia Quant. Biol. 28, 227 (1963).

    CAS  Google Scholar 

  • Nakamura, S.: Structure of azomycin, a new antibiotic. Pharm. Bull. (Tokyo) 3, 379 (1955).

    CAS  Google Scholar 

  • Nathans, D.: Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. Natl. Acad. Sci. U.S. 51, 585 (1964).

    CAS  Google Scholar 

  • Nathans, D., and F. Lipmann: Amino acid transfer from aminoacylribonucleic acids to protein on ribosomes of Escherichia coli. Proc. Natl. Acad. Sci. U.S. 47, 497 (1961).

    CAS  Google Scholar 

  • Nathans, D., G. Von Ehrenstein, R. Monro, and F. Lipmann: Protein synthesis from aminacyl-soluble ribonucleic acid. Federation Proc. 21, 127 (1962).

    CAS  Google Scholar 

  • Neidhardt, F. C.: The regulation of Rna synthesis in bacteria. In: Progress in Nucleic Acid Research and Molecular Biology, vol. 3, p. 145. Academic Press 1964

    Google Scholar 

  • Neidhardt, F. C., and F. Gros: Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of chloromycetin. Biochim. et Biophys. Actas, 25, 513 (1957).

    CAS  Google Scholar 

  • Nelson, A. A., and J. L. Radomski: Comparative pathological study in dogs of feeding of six broad-spectrum antibiotics. Antibiotics Chemotherapy 4, 1174 (1954).

    CAS  Google Scholar 

  • Newton, B. A.: Mechanisms of antibiotic action. Ann. Rev. Microbiol. 19, 209 (1965).

    CAS  Google Scholar 

  • Nirenberg, M. W., and J. H. Matthaei: Dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. U.S. 47, 1588 (1961).

    CAS  Google Scholar 

  • Nomura, M., and K. HosoxoWA: Biosynthesis of ribosomes. Fate of chloramphenicol particles and of pulse-labelled Rna in Escherichia coli. J. Mol. Biol. 12, 242 (1965).

    PubMed  CAS  Google Scholar 

  • Nomura, M., and J. D. Watson: Ribonucleoprotein particles within chloromycetininhibited Escherichia coli. J. Mol. Biol. 1, 204 (1959).

    CAS  Google Scholar 

  • Ochoa JR., M., and I. B. Weinstein: Polypeptide synthesis in a subcellular system derived from the L 1210 mouse ascites leukemia. J. Biol. Chem. 239, 3834 (1964).

    PubMed  CAS  Google Scholar 

  • Ofengand, J., and R. Haselkorn: Viral Rna-dependent incorporation of amino acids into protein by cell-free extracts of E. coli. Biochem. Biophys. Research 6, 469 (1962).

    CAS  Google Scholar 

  • Okamoto, K., Y. Sugino, and M. Nomura: Synthesis and turnover of phage messenger Rna in E. coli infected with bacteriophage T 4 in the presence of chloromycetin. J. Mol. Biol. 5, 527 (1962).

    CAS  Google Scholar 

  • Okamoto, S., and D. MIzuNO: Mechanism of chloramphenicol and tetracycline resistance in Escherichia coli. J. Gen. Microbiol. 35, 125 (1964).

    PubMed  CAS  Google Scholar 

  • Okamoto, S., and Y. SuzuKI: Chloramphenicol-dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome `R’. Nature 208, 1301 (1965).

    PubMed  CAS  Google Scholar 

  • Paigen, K.: Changes in the inducibility of galactokinase and,B-galactosidase during inhibition of growth in Escherichia coli. Biochim. et Biophys. Acta 77, 318 (1963).

    CAS  Google Scholar 

  • Pardee, A. B., K. Paigen, and L. S. Prestidge: A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim. et Biophys. Acts. 23, 162 (1957).

    CAS  Google Scholar 

  • Rebstock, M. C., H. M. Crooks, J. Controulis, and Q. Bartz: Chloramphenicol (Chloromycetin). IV. Chemical studies. J. Am. Chem. Soc. 71, 2458 (1949).

    CAS  Google Scholar 

  • Rendi, R., and S. OcnOA: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. Biol. Chem. 237, 3711 (1962).

    PubMed  CAS  Google Scholar 

  • Reutner, T. F., R. E. Maxwell, K. E. Weston, and J. K. Weston: Chloramphenicol toxicity studies in experimental animals Part 1. The effects of chloramphenicol and various other antibiotics on malnutrition in dogs with particular reference to the hematopoietic system. Antibiotics Chemotherapy 5, 679 (1955).

    CAS  Google Scholar 

  • Sadao, M., and S. Oketani: Studies on chloramphenicol inactivation by microorganisms. II. Relation between chloramphenicol inactivation and chloramphenicol resistance in various microorganisms. Nippon Saikingaku Zassh. 17, 294 (1962).

    Google Scholar 

  • Schiott, C. R., and A. Stenderup: Terramycin-, aureomycin-, and chloromycetindependent bacteria isolated from patients. Acta Pathol. Microbiol. Scand. 34, 410 (1954).

    CAS  Google Scholar 

  • Segel, I. H., J. Cattaneo, and N. Sigal: The regulation of glycogen synthesis in Aerobacter aerogenes. Colloq. intern. centre natl. recherche.sci. (Paris) 124, 337 (1965).

    Google Scholar 

  • Shemyakin, M. M.: Khimia antibiotikov, vol. I. Moscow: Academy of Sciences, U. S.S.R. 1961.

    Google Scholar 

  • Shemyakin, M. M., M. N. Kolosov, M. M. Levitov, K. I. Germanova, M. G. Karapetian, Iu. B. Shvetsov, and E. M. Bamdas: Studies on the chemistry of chloromycetin (Levomycetin). Viii. Dependence of antimicrobial activity of chloromycetin on its structure and mechanism of action of chloromycetin. Zhur. Obshchei Khim. 26, 773 (1956).

    CAS  Google Scholar 

  • Smadel, J. E., and E. B. Jackson: Chloromycetin, an antibiotic with chemotherapeutic activity in experimental rickettsial and viral infections. Science 106, 418 (1947).

    PubMed  CAS  Google Scholar 

  • Smillie, R. M., W. R. Evans, and H. Lyman: Metabolic events during the formation of a photosynthetic from a nonphotosynthetic cell. Brookhaven Symposia Biol. 16, 89 (1963).

    Google Scholar 

  • Smith, C. G., W. L. LuMmis, and J. E. Grady: An improvised tissue culture assay. II. Cytotoxicity studies with antibiotics, chemicals, and solvents. Cancer Research 19, 847 (1959).

    PubMed  CAS  Google Scholar 

  • Smith, G. N., C. S. Worrel, and A. I. Swanson: Inhibition of bacterial esterases by chloramphenicol (chloromycetin). J. Bact. 58, 803 (1949).

    PubMed  CAS  Google Scholar 

  • So, A. G., and E. W. Davie: The incorporation of amino acids into protein in a cell-free system from yeast. Biochemistry 2, 132 (1963).

    PubMed  CAS  Google Scholar 

  • Speyer, J. F., P. Lengyel, C. Basilio, A. J. Wahba, R. S. Gardner, and S. Ochoa: Synthetic polynucleotides and the amino acid code. Cold Spring Harbor Symposia Quant. Biol. 28, 559 (1963).

    CAS  Google Scholar 

  • Spirin, A. S.: In vitro formation of ribosome-like particles from Cm-particles and protein. Cold Spring Harbor Symposia Quant. Biol. 28, 267 (1963).

    CAS  Google Scholar 

  • Suarez, G., and D. Nathans: Inhibition of aminoacyl-sRna binding to ribosomes by tetracycline. Biochem. Biophys. Research Commun 18, 743 (1965).

    CAS  Google Scholar 

  • Sypherd, P. S., N. Strauss, and H. P. Treffers: The preferential inhibition by chloramphenicol of induced enzyme synthesis. Biochem. Biophys. Research Commun. 7, 477 (1962).

    CAS  Google Scholar 

  • Sypherd, P. S., and N. Strauss: Chloramphenicol-promoted repression of ß-galacto- sidase synthesis in Escherichia coli. Proc. Natl. Acad. Sci. U.S. 49, 400 (1963).

    CAS  Google Scholar 

  • Szybalski, W.: Genetic studies on microbial cross-resistance to toxic agents. II. Gross resistance of Micrococcus pyogenes var. aureus to thirty-four antimicrobial drugs. Antibiotics Chemotherapy 3, 1095 (1963).

    Google Scholar 

  • Takanami, M., and T. Okamoto: Interaction of ribosomes and synthetic polyribonucleotides. J. Mol. Biol. 7, 323 (1963).

    PubMed  CAS  Google Scholar 

  • Taylor, F. J.: The effect of chloramphenicol on the growth of Scenedesmus quadricauda. J. Gen. Microbiol. 39, 275 (1965).

    PubMed  CAS  Google Scholar 

  • Thomas, R.: Effects of chloramphenicol on genetic replication in bacteriophage. Virology 9, 275 (1959).

    PubMed  CAS  Google Scholar 

  • Ting, R. C.-Y.: A curing effect of chloramphenicol on bacteria infected with bacteriophage. Virology 12, 68 (1960).

    PubMed  CAS  Google Scholar 

  • Traut, R. R., and R. E. MoNro: The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10, 63 (1964).

    PubMed  CAS  Google Scholar 

  • Truhaut, R., S. Lambin et M. Boyer: Contribution a l’etude du mecanisme d’action de la chloromycetine vis-a-vis-d’Eberthella typhi. Role du tryptophane. Bull. soc. chim. biol. 33, 387 (1951).

    PubMed  CAS  Google Scholar 

  • Vazquez, D.: Antibiotics which affect protein synthesis: the uptake of C14-chloramphenicol by bacteria. Biochem. Biophys. Research. Commun. 12, 409 (1963).

    CAS  Google Scholar 

  • Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Research Commun. 15, 464 (1964a).

    CAS  Google Scholar 

  • Vazquez, D.: Uptake and binding of chloramphenicol by sensitive and resistant organisms. Nature 203, 257 (1964b).

    PubMed  CAS  Google Scholar 

  • Vazquez, D.: Mode of action of chloramphenicol and related antibiotics. 16th Symp. Soc. Gen. Microbiol. 169, 1966a.

    Google Scholar 

  • Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. et Biophys. Acta 114, 289 (1966b).

    CAS  Google Scholar 

  • Vinter, V.: Spores of microorganisms. Chloramphenicol-sensitive and penicillin-resistant incorporation of C14-diaminopimelic acid into sporulating cells of Bacillus cereus. Experientia 19, 307 (1963).

    PubMed  CAS  Google Scholar 

  • Watanabe, T.: Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27, 87 (1963).

    PubMed  CAS  Google Scholar 

  • Weisberger, A. S., S. Armentrout, and S. Wolfe: Protein synthesis by reticulocyte ribosomes. I. Inhibition of polyuridylic acid-induced ribosomal protein synthesis by chloramphenicol. Proc. Natl. Acad. Sci. U.S. 50, 86 (1963).

    CAS  Google Scholar 

  • Weisberger, A. S., and S. Wolfe: Effect of chloramphenicol on protein synthesis. Federation Proc. 23, 976 (1964).

    CAS  Google Scholar 

  • Weisberger, A. S., S. Wolfe, and S. Armentrout: Inhibition of protein synthesis in mammalian cell-free systems by chloramphenicol. J. Exptl.Med. 120, 161 (1964).

    CAS  Google Scholar 

  • Willson, C., and F. Gros: Protein synthesis with an Escherichia coli system in vitro. Biochim. et Biophys. Acta 80, 478 (1964).

    CAS  Google Scholar 

  • Wintersberger, E.: Proteinsynthese in isolierten Hefe-Mitochondrien. Biochem. Z. 341, 409 (1965).

    CAS  Google Scholar 

  • Wisseman, C. L., F. E. Hahn, H. Hopps, and J. E. Smadel: Chloramphenicol inhibition of protein synthesis. Federation Proc. 12, 466 (1953).

    Google Scholar 

  • Wisseman, C. L., H. L. Ley, and F. Hahn: Action of chloramphenicol on microorganisms Bacteriol. Proc. 1950, 94.

    Google Scholar 

  • Wisseman, C. L., J. E. Smadel, F. E. Hahn, and H. E. Horps: Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bact. 67, 662 (1954).

    PubMed  CAS  Google Scholar 

  • Worse, C., S. Naomo, R. Soffer, and F. Gros: Studies on the breakdown of mRna. Biochem. Biophys. Research Commun. 11, 435 (1963).

    Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Studies on chloramphenicol, ribosomes, and an amino acid incorporation system of E. coli origin. Federation Proc. 23, 269 (1964).

    Google Scholar 

  • WoLfe, A. D., and F. E. Hahn: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosome. Biochim. et Biophys. Acta 95, 146 (1965).

    Google Scholar 

  • Woolley, D. W.: A study of non-competitive antagonism with chloromycetin and related analogues of phenylalanine J Biol. Chem. 185, 293 (1950).

    PubMed  CAS  Google Scholar 

  • Yarmolinsky, M. B., and G. DE LA Haba: Inhibition by puromycin of amino acid incorporation into protein. Proc. Natl. Acad. Sci. U.S. 44, 885 (1959).

    Google Scholar 

  • YuNis, A. A., and G. R. Bloomberg: Chloramphenicol toxicity: Clinical features and pathogenesis. Progr. Hematol. 4, 138 (1964).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hahn, F.E. (1967). Chloramphenicol. In: Gottlieb, D., Shaw, P.D. (eds) Antibiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38439-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38439-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37649-2

  • Online ISBN: 978-3-662-38439-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics