Advertisement

Antibiotics pp 211-245 | Cite as

The Mitomycins and Porfiromycins

  • W. Szybalski
  • V. N. Iyer
Chapter

Abstract

The mitomycins and porfiromycins form a group of closely related bactericidal and cytotoxic antibiotics produced by several Streptomyces species.

Keywords

Deoxyribonucleic Acid Sulfur Mustard Phenethyl Alcohol Synthetic Study Aziridine Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, N., H. Kaji, and T. Arai: On the mechanism of action of mitomycin C. Ann. Rep. Inst. Food Microbiology, Chiba University 15, 74 (1963).Google Scholar
  2. Albertsson, P.-A.: Partition of double-stranded and single-stranded deoxy-ribonucleic acid. Arch. Biochem. Biophys., Suppl. 1, 264 (1962).Google Scholar
  3. Allen, E., and W. Seaman: Method of assay for ethylenimine derivatives. Anal. Chem. 27, 540 (1955).Google Scholar
  4. Allen, JR., G. R., J. F. Poletto, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. II. The synthesis of 7-methoxymitosene an antibacterial agent. J. Am. Chem. Soc. 86, 3877 (1964 a).Google Scholar
  5. Allen, JR., G. R., J. F. Poletto, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. Iii. Related indoloquinones, active antibacterial agents. J. Am. Chem. Soc. 86, 3878 (1964b).Google Scholar
  6. Allen, JR., G. R., J. F. Poletto, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. V. Preparation of 7-methoxymitosene. J. Org. Chem. 30, 2897 (1965).Google Scholar
  7. Allen, JR., G. R., C. Pidacks, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. Xiv. The Nenitzescu indole synthesis. Formation of isomeric indoles and reaction mechanism. J. Am. Chem. Soc. 88, 2536 (1966).Google Scholar
  8. Allen, JR., G. R., and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. VI. Transformation in the 2,3-dihydro-1H-pyrrolo[1,2-a]indole system. J. Org. Chem. 30, 2904 (1965).Google Scholar
  9. Anonymous: Bibliography of mitomycin C, p. 1–49. Tokyo: Kyowa Hakko Kogyo Co., Lt. 1962.Google Scholar
  10. Bach, M. K., and W. E. Magee: Interrelationships between the synthesis of host-and vaccinia-Dna. Federation Proc. 21, 463 (1962).Google Scholar
  11. Balassa, G.: Action de la mitomycine C sur la transformation du Pneumocoque. Ann. Inst. Pasteur 102, 547 (1962).Google Scholar
  12. Ben-Porat, T., M. Reissig, and A. S. Kaplan: Effect of mitomycin C on the synthesis of infective virus and deoxyribonucleic acid in pseudorabies virus-infected rabbit kidney cells. Nature 190, 33 (1961).Google Scholar
  13. Bieliavsky, N.: Effects de la mitomycine sur l’incorporation de la thymidine tritiée dans les embryons d’amphibiens au stade morula. Exptl. Cell Research 32, 342 (1963).Google Scholar
  14. Bloom, B. R., L. D. Hamilton, and M. W. Chase: Effects of mitomycin C on the cellular transfer of delayed-type hypersensitivity in the guinea pig. Nature 201, 689 (1964).PubMedGoogle Scholar
  15. Borenfreund, E., M. Krim, and A. Bendich: Effects of mitomycin C on the infection of cells by polyoma virus and its Dna. Virology 25, 393 (1965).PubMedGoogle Scholar
  16. Boyce, R. P.: Production of additional sites of deoxyribonucleic acid breakdown in bromouracil containing Escherichia coli exposed to ultra-violet light. Nature 209, 688 (1966).PubMedGoogle Scholar
  17. Boyce, R. P., and P. Howard-Flanders: Genetic control of Dna breakdown and repair in E. coli K-12 treated with mitomycin C or ultraviolet light. Z. Vererbungsl. 95, 345 (1964).Google Scholar
  18. Cheer, S., and T. T. Tchen: Effect of mitomycin C on the synthesis of induced ß-galactosidase in E. coli. Biochem. Biophys. Research Commun. 9, 271 (1962).Google Scholar
  19. Cheer, S., and T. T. Tchen: Effect of mitomycin C on induced enzyme synthesis in Escherichia coli. Bacteriol. Proc. 38 (1963).Google Scholar
  20. Clark, A. J., and A. D. Margulies: Isolation and characterization of recombinationdeficient mutants of Escherichia coli K 12. Proc. Natl. Acad. Sci. U.S. 53, 451 (1965).Google Scholar
  21. Cohen, M. M., and M. W. Shaw: Effects of mitomycin C on human chromosomes. J. Cell Biol. 23, 386 (1964).PubMedGoogle Scholar
  22. Coles, N. W., and R. Gross: The effect of mitomycin C on the induced synthesis of penicillinase in Staphylococcus aureus. Biochem. Biophys. Research Commun. 20, 366 (1965).Google Scholar
  23. Constantopoulos, G., and T. T. Tchen: Enhancement of mitomycin C-induced breakdown of Dna by inhibitors of protein synthesis. Biochim. et Biophys. Acta 80, 456 (1964).Google Scholar
  24. Cooper, S., and N. D. Zinder: The growth of an Rna bacteriophage: The role of Dna synthesis. Virology 18, 405 (1962).PubMedGoogle Scholar
  25. Culvenor, C. C. J., A. T. Dann, and A. T. Dick: Alkylation as the mechanism by which the hepatotoxic pyrrolozidine alkaloids act on cell nuclei. Nature 195, 570 (1962).PubMedGoogle Scholar
  26. Cummings, D. J.: Macromolecular synthesis during synchronous growth of Escherichia coli B/r. Biochim. et Biophys. Acta 85, 341 (1965).Google Scholar
  27. Cummings, D. J., and A. L. Taylor: Thymineless death and its relation to UV sensitivity in Escherichia coli. Proc. Natl. Acad. Sci. U.S. 56, 171 (1966).Google Scholar
  28. DE Boer, D., A. Dietz, N. E. Lummis, and G. M. Savage: Porfiromycin, a new antibiotic. I. Discovery and biological activities. In: Antimicrobial Agents Annual 1960, p. 17–22. New York: Plenum Press 1961.Google Scholar
  29. Dewitt, W., and D. R. Helinski: Characterization of colicinogenic factor E, from a non-induced and mitomycin C-induced Proteus strain. J. Mol. Biol. 13, 692 (1965).Google Scholar
  30. Driskell-Zamenhof, P. J., and E. A. Adelberg: Studies on the chemical nature and size of sex factors of Escherichia coli K12. J. Mol. Biol. 6, 483 (1963).Google Scholar
  31. Dudnik, J. V.: Induction of lysogenic Micrococcus lysodeikticus by antibiotics with ability to affect Dna synthesis. Antibiotiki 2, 112 (1965).Google Scholar
  32. Durham, N. N.: Inhibition of microbial growth and separation by D-serine, vancomycin, and mitomycin C. Bacteriol. J. 86, 380 (1963).Google Scholar
  33. Epstein, J., R. W. Rosenthal, and R. J. Ess: Use of y-(4-nitrobenzyl) pyridine as analytical reagent for ethylenimines and alkylating agents. Anal. Chem. 27, 1435 (1955).Google Scholar
  34. Erikson, R. L., and W. Szybalski: The Cs2SO4 equilibrium density gradient and its application for the study of T-even phage Dna: Glucosylation and replication. Virology 22, 111 (1964).Google Scholar
  35. Evans, A. E.: Mitomycin C. Cancer Chemoth. Rep. No. 14, 1 (1961).Google Scholar
  36. Evans, J. S., E. A. Musser, and J. E. Gray: Porfiromycin antitumor and toxicopathologic studies. Antibiotics Chemotherapy 11, 445 (1961).PubMedGoogle Scholar
  37. Evans, J. S., L. Bostwick, and G. D. Mengel: Synergism of the antineoplastic activity of cytosine arabinoside by porfiromycin. Biochem. Pharmacol. 13, 983 (1964).PubMedGoogle Scholar
  38. Friedman, O. M., G. N. Mahapatra, and R. Stevenson: The methylation of deoxy- ribonucleosides by diazomethane Biochim. et Biophys. Acta 68, 144 (1963).Google Scholar
  39. Friedman, O. M., G. N. Mahapatra, B. Dash, and R. Stevenson: Studies on the action of diazomethane on deoxyribonucleic acid. The action of diazomethane on ribonucleosides. Biochim. et Biophys. Acta 103, 286 (1965).Google Scholar
  40. Garrett, E. R.: The physical chemical characterization of the products, equilibrium, and kinetics of the complex transformations of the antibiotic porfiromycin. J. Med. Chem. 6, 488 (1963).PubMedGoogle Scholar
  41. Garrett, E. R., and W. Schroeder: Prediction of stability in pharmaceutical preparations. Xiii. Stability, spectrophotometric, and biological assay of the antibiotic porfiromycin in pharmaceutically useful pH ranges. J. Pharm. Sci. 53, 917 (1964).PubMedGoogle Scholar
  42. Gause, G. F., G. V. Kochetkova, and G. B. Vladimirova: Mutants with impaired respiration in Staphylococcus afermentans. J. Gen. Microbiol. 30, 29 (1963).PubMedGoogle Scholar
  43. Geissler, E.: Untersuchungen über den Mechanismus der Induktion lysogener Bakterien. IX. Die Temperaturabhängigkeit der Induktion durch ThyminMangel und Mitomycin C. Biochim. et Biophys. Acta 114, 116 (1966).Google Scholar
  44. Gourevitch, A., T. A. Pursiano, and J. Lein: Destruction of mitomycin by Streptomyces caespitosus mycelia. Arch. Biochem. Biophys. 93, 283 (1961).PubMedGoogle Scholar
  45. Greenberg, J., J. D. Mandell, and P. L. Woody: Resistance and cross-resistance of Escherichia coli mutants to antitumour agent mitomycin C. J. Gen. Microbiol. 26, 509 (1961).PubMedGoogle Scholar
  46. Greenberg, J., and P. Woody-Karrer: Radiosensitivity in Escherichia coli. J. Gen. Microbiol. 33, 283 (1963)Google Scholar
  47. Grula, E. A., and M. M. Grula: Cell division in a species of Erwinia. V. Effect of metabolic inhibitors on terminal division and composition of a “division” medium. J. Bacteriol. 84, 492 (1962 a).Google Scholar
  48. Grula, M. M., and E. A. Grula: Reversal of mitomycin C-induced growth and division inhibition in a species of Erwinia. Nature 195, 1126 (1962 b).Google Scholar
  49. Hata, T., Y. Sano, R. Sugawara, A. Matsumae, K. Kanamori, T. Shima, and T. HosHI: Mitomycin, a new antibiotic from Streptomyces. I. J. Antibiotics (Japan), Ser. A 9, 141 (1956).Google Scholar
  50. Hercik, F.: Effects of mitomycin and alpha-rays on the capacity of Escherichia coli B for phage T3. Folia Biol. (Prague) 9, 42 (1963).Google Scholar
  51. Herr, R. R., M. E. Bergy, T. E. Eble, and H. K. Jahnke. Porfiromycin, a new antibiotic. In: Antimicrobial Agents Annual 1960, p. 23. New York: Plenum Press 1961.Google Scholar
  52. Hiraga, S.: Regulation of synthesis of alkaline phosphatase by deoxyribonucleic acid synthesis in a constitutive mutant of Bacillus subtilis. J. Bacteriol. 91, 2192 (1966).PubMedGoogle Scholar
  53. Holliday, R.: The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces. Genetics 50, 323 (1964).PubMedGoogle Scholar
  54. Howard-Flanders, P., R. P. Boyce, and L. Theriot: Three loci in Escherichia coli K-12 that control the excission of pyrimidine dimers and certain other mutagen products from Dna. Genetics 53, 1119 (1966).Google Scholar
  55. Iijima, T.: Studies on the colicinogenic factor in Escherichia coli K 12. Induction of colicin production by mitomycin C. Biken’s J. 5, 1 (1962).Google Scholar
  56. Iijima, T., and A. Hagawara: Mutagenic action of mitomycin C on Escherichia coli. Nature 185, 395 (1960).PubMedGoogle Scholar
  57. Iwabuchi, M., T. Saho, and S. Tanifuji: Studies on the factors affecting the rejoining of chromosome breaks produced by X-rays. I. Effects of mitomycin C, chloramphenicol, adenosine triphosphate and nucleosides on the yield of X-ray induced chromosome aberations. Japan. J. Genetics 41, 379 (1966).Google Scholar
  58. Iyer, V. N.: Mutations determining mitomycin resistance in Bacillus subtilis. J. Bacteriol. 92, 1663 (1966).PubMedGoogle Scholar
  59. Iyer, V. N., and W. Szybalski: A molecular mechanism of mitomycin action: Linking of complementary Dna strands. Proc. Natl. Acad. Sci. U.S. 50, 355 (1963).Google Scholar
  60. Iyer, V. N., and W. Szybalski Mitomycins and porfiromycin: Chemical mechanism of activation and cross-linking of Dna. Science 145, 55 (1964).Google Scholar
  61. Kersten, H.: Action of mitomycin C on nucleic acid metabolism in tumor and bacterial cells. Biochim. et Biophys. Acta 55, 558 (1962a).Google Scholar
  62. Kersten, H.: Zur Wirkungsweise von Mitomycin C, I. Einfluß von Mitomycin C auf den Desoxyribonucleinsäure-Abbau in ruhenden Bakterien. Hoppe-Seylers Z. physiol. Chem. 329, 31 (1962b).Google Scholar
  63. Kersten, H., and W. Kersten: Zur Wirkungsweise von Mitomycin C. II. Einfluß von Mitomycin C, C.loramphenicol und Mgt} auf den Rna- und Dna-Stoffwechsel in Bakterien. Hoppe-Seyler’s Z. physiol. Chem. 334, 141 (1963).Google Scholar
  64. Kersten, H., W. Kersten, G. Leopold, and B. Schnieders: Effect of mitomycin C on Dnaase and Rna in Escheyichia coli. Biochim. et Biophys. Acta 80, 521 (1964).Google Scholar
  65. Kersten, W., H. Kersten, and W. Szybalski: Physicochemical properties of complexes between Dna and antibiotics which affect Rna synthesis (actinomycin, daunomycin, cinerubin, nogalamycin, chromomycin, mithramycin, and olivomycin). Biochemistry 5, 236 (1966).PubMedGoogle Scholar
  66. Kersten, H., B. Schnieders, G. Leopold, and W. Kersten: Die Deoxyribonucleasen von Escherichia coli und die Wirkung von Mitomycin C. Biochim. et Biophys. Acta 108, 619 (1965).Google Scholar
  67. Kersten, H., and H. M. Rauen: Degradation of deoxyribonucleic acid in Escheyichia coli cells treated with mitomycin C. Nature 190, 1195 (1961).PubMedGoogle Scholar
  68. Kersten, H., and H. Themann: Morphologische und biochemische Veränderungen an Ascites-Tumorzellen der Maus nach Einwirkung von Mitomycin C. Z. ges. exptl. Med. 136, 209 (1962).Google Scholar
  69. Kimura, Y.: Cytological effect of chemicals on tumors. Xvii. Effect of mitomycin-C and carzinophilin on HeLa cells. Gann 54, 163 (1963).PubMedGoogle Scholar
  70. Kirsch, E. J., and J. D. Korshalla: Influence of biological methylation on the biosynthesis of mitomycin A. J. Bacteriol. 87, 247 (1964).PubMedGoogle Scholar
  71. Kit, S., L. J. Piekarski, and D. R. Dubbs: Effects of 5-fluorouracil, actinomycin D and mitomycin C on the induction of thymidine kinase by vaccinia-infected L-cells. J. Mol. Biol. 7, 497 (1963).PubMedGoogle Scholar
  72. Knolle, P., and F. Kaudewitz: Degree of host control on Rna production of an Rna phage. Abstracts, Sixth Int. Congr. Biochem. 3, 234 (1964).Google Scholar
  73. Kohn, K. W., C. L. Spears, and P. Doty: Inter-strand cross-linking of Dna by nitrogen mustard. Appendix. Terminology of configurational changes of Dna in solution. J. Mol. Biol. 19, 266 (1966).PubMedGoogle Scholar
  74. Kontani, H.: Effect of mitomycin C on nucleic acid biosynthesis in Ehrlich ascites tumor cells. Biken’s J. 7, 9 (1964).Google Scholar
  75. Korn, D., and A. Weissbach: Thymineless induction in Escheyichia coli K 12 (A). Biochim. et Biophys. Acta 61, 775 (1962).Google Scholar
  76. Korn, D., and A. Weissbach: The effect of lysogenic induction of the deoxyribonucleases of Escheyichia coli K 12 (A). II. The kinetics of formation of a new exonuclease and its relation to phage development. Virology 22, 91 (1964).Google Scholar
  77. Kosaka, Y.: A cytological study on abnormal mitosis induced by mitomycin C in cultures of HeLa cell. Mie Med. J. 13, 51 (1964).Google Scholar
  78. Kuroda, Y., and J. Furuyama. Physiological and biochemical studies of effects of mitomycin C on strain HeLa cells in cell culture. Cancer Research 23, 682 (1963).PubMedGoogle Scholar
  79. Lapis, K., and W. Bernhard: The effect of mitomycin C on the nucleolar fine structure of KB cells in cell culture. Cancer Research 25, 628 (1965).PubMedGoogle Scholar
  80. Lawley, P. D., and P. Brookes: Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J. 89, 127 (1963).PubMedGoogle Scholar
  81. Lefemine, D. V., M. Dann, F. Barbatschi, W. K. Hausmann, V. Zbinovsky, P. Monnikendam, J. Adam, and N. Bohonos: Isolation and characterization of mitiromycin and other antibiotics produced by Streptomyces verticillatus. J. Am. Chem. Soc. 84, 3184 (1962).Google Scholar
  82. Lehman, I. R.: The nucleases of Escheyichia coli. Progr. Nucleic Acid Research 2, 83 (1963).Google Scholar
  83. Lein, J., B. Heinemann, and A. Gourevitch: Induction of lysogenic bacteria as a method of detecting potential antitumour agent. Nature 196, 783 (1962).PubMedGoogle Scholar
  84. Leopold, G., B. Schnieders, H. Kersten, and W. Kersten: The effect of mitomycin C on ribosomes and soluble ribonucleic acid in Escherichia coli. Biochem. Z. 343, 423 (1965).PubMedGoogle Scholar
  85. Levine, M.: Effect mitomycin C on interactions between temperate phages and bacteria. Virology 13, 493 (1961).PubMedGoogle Scholar
  86. Lewis, C., H. W. Clapp, and H. R. Reames: Porfiromycin, a new antibiotic. Iii. In vitro and in vivo evaluation. In: Antimicrobial Agents Annual 1960, p. 27. New York: Plenum Press 1961.Google Scholar
  87. Lindqvist, B., and R. L. Sinsheimer: The use of mitomycin C als a selective inhibitor of host Dna synthesis in OX174-infected, her-cells. Federation Proc. 25, 651 (1966).Google Scholar
  88. Lipsett, M. N., and A. Weissbach: The site of alkylation of nucleic acids by mitomycin. Biochemistry 4, 206 (1965).Google Scholar
  89. Magee, W. E., and O. V. Miller: Dissociation of the synthesis of host and viral deoxyribonucleic acid. Biochim. et Biophys. Acta 55, 818 (1962).Google Scholar
  90. Mandell, J. D., and A. D. Hershey: A fractionating column for analysis of nucleic acids. Anal. Biochem. 1, 66 (1960).PubMedGoogle Scholar
  91. Martius, C.: Quinone reductases. In: Enzymes (P. D. Boyer, H. Lardy and K. MyrbÄCK, eds.), vol. 7, p. 517. New York: Academic Press 1963.Google Scholar
  92. Matsumoto, I., and K. G. Lark: Altered Dna isolated from cells treated with mitomycin C. Exptl. Cell Research 32, 192 (1963).Google Scholar
  93. Matsumoto, I., and Y. Takagi: Action mechanism of mitomycin C. Abstracts of Papers, Ninth Intern. Cancer Congress, Tokyo, 1966, p. 353.Google Scholar
  94. Matsuura, H., S. Tanifuji, T. Sato, and M. Iwabuchi: Chromosome studies on Trillium kamtschaticum Pall. and its Allies. Xxvi. The effect of mitomycin C on the frequency of X-ray-induced chromosome aberations. J. Fac. Sci. Hokkaido Univ., Ser. V, 8, 75 (1962).Google Scholar
  95. Matsuura, H., S. Tanifuji, T. Sato, and M. Iwabuchi: Effect of mitomycin-C on the frequency of chromosome aberrations produced by X-rays. Am. Naturalist 97, 191 (1963).Google Scholar
  96. Mayne, E.: Essais d’élimination par l’acridine orange ou la mitomycine d’un facteur colicinogène lié a un facteur de fertilité chez Escherichia coli. Ann. Inst. Pasteur 109, 154 (1965).Google Scholar
  97. Mennigmann, H.-D., and W. Szybalski: Molecular mechanism of thymine-less death. Biochem. Biophys. Research Commun. 9, 398 (1962).Google Scholar
  98. Merz, T.: Effect of mitomycin C on lateral root-tip chromosomes on Vicia faba. Science 133, 329 (1961).PubMedGoogle Scholar
  99. Miyaki, K.: Inhibitory effects on the growth of Ehrlich ascites tumor of mitomycin C combined with 1,4-naphthoquinone derivatives. Ann. Rep. Inst. Food Microbiol., Chiba Univ. 15, 49 (1963), abstracted by Cancer Chemother. Abstr. 5, 484 (1964).Google Scholar
  100. Miyamura, S., N. Shigeno, M. Matsui, S. Wakaki, and K. Uzu: The antibacterial studies on mitomycin derivatives. I. Antibacterial activities of mitomycin derivatives. J. Antibiotics (Japan), Ser. A (in press) (1967).Google Scholar
  101. Munk, K., and G. Sauer: Vermehrung und Dns-Synthese des Herpes-simplex-Virus nach Mitomycin C-Behandlung. Z. Naturforsch. 20b, 671 (1965).Google Scholar
  102. Murakami, H.: Electron aspects of the mode of action of the mitomycin molecule. J. Theoret. Biol. 10, 236 (1966).Google Scholar
  103. Muschel, L. H., and K. Schmoker: Activity of mitomycin C, other antibiotics, and serum against lysogenic bacteria. J. Bacteriol. 92, 967 (1966).PubMedGoogle Scholar
  104. Nakata, Y., K. Nakata, and Y. Sakamoto: On the action mechanism of mitomycin C. Biochem. Biophys. Research Commun. 6, 339 (1962).Google Scholar
  105. Newton, B. A.: Mechanism of antibiotic action. Ann. Rev. Microbiol. 19, 209 (1965).Google Scholar
  106. Niitani, H., A. Suzuki, M. Shimoyama, and K. Kimura: Effect of mitomycin C injection on lysosomal enzymic activities of Yoshida ascites sarcoma. Gann 55, 447 (1964).PubMedGoogle Scholar
  107. Nygaard, A. P., and B. D. Hall: A method for the detection of Rna-Dna complexes. Biochem. Biophys. Research Commun. 12, 98 (1963).Google Scholar
  108. Oboshi, S., M. Matsui, S. Ishii, N. Masago, S. Wakaki, and K. Uzu: Antitumor studies on mitomycin derivatives. II. Effect on solid tumor of sarcoma 180. Manuscript to be published (1967).Google Scholar
  109. Okamoto, T., 7. Hasegawa, T. Kinoshita, M. Ishiguro, and D. Mizuno: The anti tumor activity of 4,6-dinitroquinoline 1-oxide. Yakugaku Zasshi 85, 720 (1965).Google Scholar
  110. Okubo, S.: Genetic studies on the non-infectious phage produced in the presence of mitomycin C. Biken’s J. 5, 51 (1962).Google Scholar
  111. Okubo, S., and W. R. Romig: Impaired transformability of Bacillus subtilis mutant sensitive to mitomycin C and ultraviolet radiation. J. Mol. Biol. 15, 440 (1966).PubMedGoogle Scholar
  112. Otsuji, N.: The effect of glucose on the induction of lambda phage formation by mitomycin C. Biken’s 4, 235 (1961).Google Scholar
  113. Otsuji, N.: Dna synthesis and lambda phage development in a lysogenic strain of Escherichia coli K12. Biken’s J. 5, 9 (1962).Google Scholar
  114. Otsuji, N., M. Sekiguchi, T. Iijima, and T. Takagi: Induction of phage formation in the lysogenic Escherichia coli K 12 by mitomycin C. Nature 184, 1079 (1959).PubMedGoogle Scholar
  115. Paris, O. E., and P. E. Fanta: Cyclohexenimine (7-azabicyclo [4.1.0] heptane) and the stereochemistry of ethylenimine ring-closure and opening. J. Am. Chem. Soc. 74, 3007 (1952).Google Scholar
  116. Patrick, J. B., R. P. Williams, W. E. Meyer, W. Fulmor, D. B. Cosulich, R. W. Broschard, and J. S. Webb: Aziridinomitosenes: A new class of antibiotics related to the mitomycins. J. Am. Chem. Soc. 86, 1889 (1964).Google Scholar
  117. Pricer, JR., W. E., and W. W.Issbach: The effect of lysogenic induction with mitomycin C on the Dna and Dna polymerase of Escherichia coli K122. Biochem. Biophys. Research Commun. 14, 91 (1964).Google Scholar
  118. Pricer, JR., W. E., and A. W.Issbach: Enzymatic utilization and degradation of Dna treated with mitomycin C or ultraviolet light. Biochemistry 4, 200 (1965).Google Scholar
  119. Radding, C. M.: Nuclease activity in defective lysogens of phage A. Biochem. Biophys. Research Commun. 15, 8 (1964).Google Scholar
  120. Rao, K. V., K. Biemann, and R. B. Woodward: The structure of streptonigrin. J. Am. Chem. Soc. 85, 2532 (1963).Google Scholar
  121. Reich, E.: Actinomycin: correlation of structure and function of its complexes with purines and Dna. Science 143, 684 (1964).PubMedGoogle Scholar
  122. Reich, E., and R. M. Franklin: Effect of mitomycin C on the growth of some animal viruses. Proc. Natl. Acad. Sci. U.S. 47, 1212 (1961).Google Scholar
  123. Reich, E., A. J. Shatkin, and E. L. Tatum: Bacteriocidal action of mitomycin C. Biochim. et Biophys. Acta 45, 608 (1960).Google Scholar
  124. Reich, E., A. J. Shatkin, and E. L. Tatum: Bacteriocidal action of mitomycin C. Biochim. et Biophys. Acta 53, 132 (1961).Google Scholar
  125. Reilly, H. C., J. C. Cappuccino, and D. M. Harrison: Studies on mitomycin X, a tumor-inhibiting antibiotic. Proc. Am. Assoc. Cancer Research 2, 338 (1958).Google Scholar
  126. Remers, W. A., P. N. James, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. I. Synthesis of model quinones. J. Org. Chem. 28, 1169 (1963).Google Scholar
  127. Remers, W. A., R. H. Roth, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. IV. Introduction of the 9-hydroxymethyl group into the 1-ketopyrrolo [1,2-a]indole system. J. Am. Chem. Soc. 86, 4612 (1964).Google Scholar
  128. Remers, W. A., R. H. Roth, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. Vii. An exploration of pyrrolo [1,2-a] indole A-ring chemistry directed toward the introduction of the aziridine function. J. Org. Chem. 30, 2910 (1965).Google Scholar
  129. Remers, W. A., and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. IX. A versatile new method of indole synthesis. J. Am. Chem. Soc. 87, 5262 (1965).PubMedGoogle Scholar
  130. Remers, W. A., and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. Xii. Indoloquinone analogs with variations at positions 5 and 6. J. Am. Chem. Soc. 88, 804 (1966).PubMedGoogle Scholar
  131. Ross, W. C. J.: Biological alkylating agents, p. 107. London: Butterworth Co. 1962.Google Scholar
  132. Roles, R. H., W. A. Remers, and M. J. Weiss: The mitomycin antibiotics. Synthetic studies. Xiii. Indoloquinone analogs with variation at C-5. J. Org. Chem. 31, 1012 (1966).Google Scholar
  133. Rott, R., S. Saber, and C. Scholtissek: Effect on myxovirus of mitomycin C, actinomycin D, and pretreatment of the host cell with ultra-violet light. Nature 205, 1187 (1965).Google Scholar
  134. Sakurai, Y.: In vitro culture of Yoshida sarcoma cells: methods for determining acquired resistance to drugs. Natl. Cancer Inst. Monograph No. 16, 207 (1964).Google Scholar
  135. Sartorelli, A. C., and B. A. Booth: The synergistic-anti-neoplastic activity of combinations of mitomycins with either 6-thioguanine or 5-fluorouracil. Cancer Research 25, 1393 (1965).PubMedGoogle Scholar
  136. Schatz, V. B., and L. B. Clapp: Reactions of ethylenimines. V. Hydrolysis. J. Am. Chem. Soc. 77, 5113 (1955).Google Scholar
  137. Schwartz, H. S.: Pharmacology of mitomycin C: Iii. In vitro metabolism by rat liver. J. Pharmacol. Exptl. Therap. 136, 250 (1962).Google Scholar
  138. Schwartz, H. S., and F. S. Philips: Pharmacology of mitomycin C. II. Renal excretion and metabolism by tissue homogenates. J. Pharmacol. Exptl. Therap. 133, 335 (1961).Google Scholar
  139. Schwartz, H. S., J. E. Sodergren, and F. S. Philips: Mitomycin C: Chemical and biological studies on alkylation. Science 142, 1181 (1963a).PubMedGoogle Scholar
  140. Schwartz, H. S., S. S. Sternberg, and F. S. Philips: Pharmacology of mitomycinC. IV. Effects in vivo on nucleic acid synthesis; comparison with actinomycin D. Cancer Research 23, 1125 (1963b).PubMedGoogle Scholar
  141. Sekiguchi, M., and Y. Takagi: Synthesis of deoxyribonucleic acid by phage-infected Escherichia coli in the presence of mitomycin C. Nature 183, 1134 (1959).PubMedGoogle Scholar
  142. Sekiguchi, M., and Y. Takagi: Effect of mitomycin C on the synthesis of bacterial and viral deoxyribonucleic acid. Biochim. et Biophys. Acta 41, 434 (1960a).Google Scholar
  143. Sekiguchi, M., and Y. Takagi • Noninfectious bacteriophage produced by the action of mitomycin C. Virology 10, 160 (1960b).Google Scholar
  144. Shatkin, A. J., E. Reich, R. M. Franklin, and E. L. Tatum: Effect of mitomycin C on mammalian cells in culture. Biochim. et Biophys. Acta 55, 277 (1962).Google Scholar
  145. Shaw, M. W., and M. M. Cohen: Chromosome exchanges in human leukocytes induced by mitomycin C. Genetics 51, 181 (1965).PubMedGoogle Scholar
  146. Shiba, S., A. Terawaki, T. Taguchi, and J. Kawamata: Studies on the effect of mitomycin C on nucleic acid metabolism in Escherichia coli strain B. Biken’s J. 1, 179 (1958).Google Scholar
  147. Shiba, S., A. Terawaki, T. Taguchi, and J. Kawamata: Selective inhibition of formation of deoxyribonucleic acid in Escherichia coli by mitomycin C. Nature 183, 1056 (1959).PubMedGoogle Scholar
  148. Shiio, T., G. Weinbaum, H. Takahashi, and B. Maruo: Chromatographic analysis of nucleotidic compounds in Bacillus subtilis. J. Gen. Appl. Microbiol. 8, 178 (1962).Google Scholar
  149. Smith-Kielland, I.: Effect of mitomycin C on the synthesis of messenger Rna in Escherichia coli. Biochim. et Biophys. Acta 91, 360 (1964).Google Scholar
  150. Smith-Kielland, I.: The effect of mitomycin C on deoxyribonucleic acid and messenger ribonucleic acid in Escherichia coli. Biochim. et Biophys. Acta 114, 254 (1966a).Google Scholar
  151. Smith-Kielland, I.: The effect of mitomycin C on ribonucleic acid synthesis in growing cultures of Escherichia coli. Biochim. et Biophys. Acta 119, 486 (1966b).Google Scholar
  152. Stevens, C. L., K. G. Taylor, M. E. Munk, W. S. Marshall, K. Noll, G. D. Shah, L. G. Shah, and K. Uzu: Chemistry and structure of mitomycin C. J. Med. Chem. 8, 1 (1965).PubMedGoogle Scholar
  153. Studzinski, G. P., and L. S. Cohen: Mitomycin C induced increases in the activities of the deoxyribonucleases of HeLa cells. Biochem. Biophys. Research Commun. 23, 506 (1966).Google Scholar
  154. Sugawara, R., and T. Hata: Mitomycin, a new antibiotic from streptomyces. II. Description of the strain. J. Antibiotics (Japan), Ser. A 9, 147 (1956).Google Scholar
  155. Sugiura, K.: Antitumor activity of mitomycin C. Cancer Chemoth. Rep. No. 13, 51 (1961).Google Scholar
  156. Summers, W. C., and W. Szybalski: A sensitive assay for single-strand breaks in Dna molecules. Radiation Research 25, 246 (1965).Google Scholar
  157. Summers, W. C., and W. Szybalski: y-Irradiation of Dna in dilute solutions. I. A sensitive method for detection of single strand breaks in polydisperse Dna samples. J. Mol. Biol. (in press) (1967a).Google Scholar
  158. Summers, W. C., and W. Szybalski: y-Irradiation of Dna in dilute solutions. II. Molecular mechanisms responsible for inactivation of phage, its transfecting Dna and of bacterial transforming activity. J. Mol. Biol. (in press) (1967 b).Google Scholar
  159. Sutton, M. D., and C. Quadling: Lysogeny in a strain of Xanthomonas campestris. Can. J. Microbiol. 9, 821 (1963).Google Scholar
  160. SuzuKI, D. T.: Effects of mitomycin C on crossing over in Drosophila melanogaster. Genetics 51, 635 (1965).Google Scholar
  161. SuzuKI, H., and W. W. Kilgore: Mitomycin C: effect on ribosomes of Escherichia coli. Science 146, 1585 (1964).Google Scholar
  162. Suzuxl, K., H. Yamagami, and Y. Shimazu: Effect of mitomycin C on early phenotypic expression in the transformation of Diplococcus pneumoniae. Nature 205, 929 (1965).Google Scholar
  163. Szybalski, W.: Special microbiological systems. II. Observations on chemical muta-genesis in microorganisms. Ann. N.Y. Acad. Sci. 76, 475 (1958).PubMedGoogle Scholar
  164. Szybalski, W.: Gradient plate technique for study of bacterial resistance. Science 116, 46 (1962).Google Scholar
  165. Szybalski, W.: Chemical reactivity of chromosomal Dna as related to mutagenicity: Studies with human cell lines. Cold Spring Harbor Symposia Quant. Biol. 29, 151 (1964).Google Scholar
  166. Szybalski, W.: Effect of elevated temperatures on Dna and some polynucleotides: Denaturation, renaturation and cleavage of glycosidic and phosphate ester bands. In: Thermobiology (A. H. Rose, Ed.), Chapter 4. London: Academic Press (in press) 1967.Google Scholar
  167. Szybalski, W., and V. G. Arneson: Reductive activation and inactivation of mitomycin as studied with human and bacterial cell cultures. Molecul. Pharmacol. 1, 202 (1965).Google Scholar
  168. Szybalski, W., and V. N. Iyer: Cross-linking of Dna by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Federation Proc. 23, 946 (1964a).Google Scholar
  169. Szybalski, W., and V. N. Iyer: Binding of C14-labeled mitomycin or porfiromycin to nucleic acids. Microbial Genetics Bull. No. 21, 16 (1964b).Google Scholar
  170. Szybalski, W., G. Ragni, and N. K. Cohn: Mutagenic response of human somatic cell lines. In: Cytogenetics of cells in culture. Symp. Int. Soc. Cell Biol. 3, 209 (1964); New York: Academic Press.Google Scholar
  171. Szybalski, W., and M. J. Smith: Genetics of human cell lines. I. 8-Azaguanine resistance, a selective “single-step” marker. Proc. Soc. Exptl. Biol. Med. 101, 662 (1959).Google Scholar
  172. Takagi, Y.: Action of mitomycin C. Japan J. Med. Sci. Biol. 16, 246 (1963).Google Scholar
  173. Terawaki, A., and Greenberg: Inactivation of transforming deoxyribonucleic acid by carcinophillin and mitomycin C. Biochim. et Biophys. Acta 119, 59 (1966a).Google Scholar
  174. Terawaki, A., and J. Greenberg: Post-treatment breakage of mitomycin C induced cross-links in deoxyribonucleic acid of Escherichia coli. Biochim. et Biophys. Acta 119, 540 (1966b).Google Scholar
  175. Truhaut, R., and G. Deysson: Etude des propriétés antimitotiques de la mitomycine C sur les cellules méristématiques d’A Ilium sativum L. Compt. rend. soc. biol. 154, 718 (1960).Google Scholar
  176. Tsukamura, M., and S. Tsukamura: Mutagenic effect of mitomycin C on Mycobacterium and its combined effect with ultraviolet irradiation. Japan J. Microbiol. 6, 53 (1962).Google Scholar
  177. Tulinsky, A.: The structure of mitomycin A. J. A. Chem. Soc. 84, 3188 (1962).Google Scholar
  178. Umezawa, H.: Recent advances in chemistry and biochemistry of antibiotics, 266 p. Microb. Chem. Res. Found., Tokyo 1964.Google Scholar
  179. Usubuchi, I., Y. Sobajima, T. Hongo, T. Kawaguchi, M. Sugawara, M. Matsui, S. Wakaki, and K. Uzu: Antitumor studies on mitomycin derivatives. I. Effect on ascites Hirosaki sarcoma. Manuscript to be published (1967).Google Scholar
  180. Uzu, K., M. Shimizu, R. Kojima, T. Ogami, S. Wakaki, H. Endo, and M. Matsui: Mechanism of mitomycin derivatives. Abstracts of Papers, Ninth Intern. Cancer Congress, Tokyo, 1966, p. 354, and personal communication.Google Scholar
  181. Vigier, P., et A. Golde: Action de l’actinomycine D et de la mitomycine C sur le développement du virus de Rous. Compt. rend. 258, 389 (1964 a).Google Scholar
  182. Vigier, P., and A. Golde: Effects of actinomycin D and mitomycin C on development of Rous sarcoma virus. Virology 23, 511 (1964 b).Google Scholar
  183. Wakaki, S.: Recent advance in research on antitumor mitomycins. Cancer Chemoth. Rep. No. 13, 79 (1961).Google Scholar
  184. Wakaki, S., H. Marumo, K. Tomioka, G. Shimizu, E. Kato, H. Kamada, S. Kudo, and Y. Fujimoto: Isolation of new fractions of antitumor mitomycins. Antibiotics and Chemotherapy 8, 228 (1958).Google Scholar
  185. Waring, M. J.: Cross-linking and intercalation in nucleic acids. 16th Symp. Soc. Gen. Microbiol. 1966, p. 235–265.Google Scholar
  186. Webb, J. S., D. B. Cosulich, J. H. Mowat, J. B. Patrick, R. W. Broschard, W. E. Meyer, R. P. Williams, C. F. Wolf, W. Fulmor, C. Pidacks, and J. E. Lancaster: The structures of mitomycins A, B and C and porfiromycin — Part I. J. Am. Chem. Soc. 84, 3185 (1962).Google Scholar
  187. Weissbach, A., and D. Korn: The effect of lysogenic induction on the deoxyribonucleases of Escherichia coli K 12 A. J. Biol. Chem. 234, PC 3312 (1962).Google Scholar
  188. Weissbach, A., and A. Lisio: Alkylation of nucleic acids by mitomycin C and porfiromycin. Biochemistry 4, 196 (1965).Google Scholar
  189. White, J. R., and H. L. White: Phenethyl alcohol synergism with mitomycin C, porfiromycin, and streptonigrin. Science 145, 1312 (1964).PubMedGoogle Scholar
  190. White, H. A., and J. R. White: The binding of porfiromycin to deoxyribonucleic acid. J. Elisha Mitchell Sci. Soc. 81, 37 (1965 a).Google Scholar
  191. White, J. R., and H. L. White: Effect of intracellular redox environment on bactericidal action of mitomycin C and streptonigrin. In: Antimicrobial Agents and Chemotherapy — 1964, 495 (1965 b).Google Scholar
  192. Winkler, U.: Über die Inaktivierung UV-sensibler, UV-resistenter und Mitomycin C-resistenter Mutanten von E. coli B mit UV und Mitomycin C. Naturwissenschaften 49, 91 (1962a).Google Scholar
  193. Winkler, U.: Über die Abhängigkeit der bakteriziden Wirkung von Mitomycin C auf E. coli B und B/MC von der Temperatur und dem Nährmedium. Z. Naturforsch. 17b, 670 (1962b).Google Scholar
  194. Yoshioka, M., and T. KuNii: Antibiotic resistant group A streptococci. Iii. Penicillin resistance and mitomycin C inactivation of mutants which lose soluble hemolysis production. Japan J. Microbiol. 10, 43 (1966).Google Scholar
  195. Yuki, S.: The effect of mitomycin C on the recombination in Escherichia coli K 12. Biken’s J. 5, 47 (1962).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • W. Szybalski
  • V. N. Iyer

There are no affiliations available

Personalised recommendations