Penicillins and Cephalosporins

I. In Vitro
  • Edwin H. Flynn
  • Carl W. Godzeski


Interpretation of the meaning of a term such as “mechanism of action” as applied to antimicrobial substances is certain to be highly variable and dependent to a considerable degree on the background and area of interest of the individual reader. To a classically trained microbiologist, morphological effects may be dominant and of the greatest significance while a biochemically minded individual will wish to know the nature of specific metabolic changes; a clinician interested in infectious diseases wishes to know what events are observable in the host and how these relate to the probable success or failure of his therapy.


Cell Wall Bacterial Cell Wall Cell Wall Structure Cell Wall Composition Teichoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraha., E. P.: Biochemistry of some peptide and steroid antibiotics. In: Ciba lectures in microbial biochemistry. New York: J. Wiley & Sons 1957.Google Scholar
  2. Abraha., E. P., and G. G. F. Newto.: The structure of cephalosporin C. Biochem. J. 7., 377 (1961 a).PubMedGoogle Scholar
  3. Abraha., E. P., and G. G. F. Newto.: New penicillins, cephalosporin C, and penicillinase. Endeavour 2., 92 (1961 b).PubMedGoogle Scholar
  4. Anderso., J. S., M. Matsuhash., M. A. Haski., and J L. Strominge.: Lipidphosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: Presumed membrane transport intermediates in cell wall synthesis. Proc. Natl. Acad. Sci. U.S. 5., 881 (1965).CrossRefGoogle Scholar
  5. Baddile., J., and A. L. Daviso.: The occurrence and location of teichoic acids in lactobacilli. J. Gen. Microbiol. 2., 295 (1961).PubMedCrossRefGoogle Scholar
  6. Baddile., J.: Teichoic acids and the bacterial cell wall. Endeavour 2., 33 (1964).PubMedGoogle Scholar
  7. Barnde., R. L., R. M. Evan., J. C. Hamle., B. A. Hem., A. B. A. Janse., M. E. Trevet., and G. B. Web.: Some preparation uses of benzylpenicillinic ethoxyformic anhydride. J. Chem. Soc. 1953, 3733.Google Scholar
  8. Boniec., W. S., W. E. Wic., D. H. Holme., and C. E. Redma.: In vitr. and in viv. laboratory evaluation of cephalothin, a new broad spectrum antibiotic. J. Bacteriol. 8., 1292 (1962).PubMedGoogle Scholar
  9. Chai., E., and E. S. Duthi.: Bactericidal and bacteriolytic action of penicillin on the staphylococcus. Lancet 1945, 652.Google Scholar
  10. Chan., T., and L. Weinstei.: Inhibition of synthesis of the cell wall of Staphylococcus aureu. by cephalothin. Science 14., 807 (1964).PubMedCrossRefGoogle Scholar
  11. Chatterje., A. N., and J. T. Par.: Biosynthesis of cell wall mucopeptide by a particulate fraction from Staphylococcus aureu.. Proc. Natl. Acad. Sci. U.S. 5., 9 (1964).CrossRefGoogle Scholar
  12. Chauvett., R. R., E. H. Flyn., B. G. Jackso., E. R. Lavagnin., R. B. Mori., R. A. Muelle., R. P. Pioc., R. W. Roesk., C. W. Rya., J. L. Spence., and E. Va. Heyninge.: Chemistry of cephalosporin antibiotics. H. Preparation of a new class of antibiotics and the relation of structure to activity. J. Am. Chem. Soc. 8., 3401 (1962).CrossRefGoogle Scholar
  13. Clark., P. H., and M. D. Lill.: A general structure for cell walls of gram-negative bacteria. Nature 19., 516 (1962).CrossRefGoogle Scholar
  14. Coope., P. D.: Site of action of radiopenicillin. Bacteriol. Rev. 2., 28 (1956).PubMedGoogle Scholar
  15. Dawso., I. M.: Discussion on nature of bacterial surface. Symposium Soc. Gen. Microbiol., 119 (1949).Google Scholar
  16. Doyl., F. P., and J. H. C. Nayle.: Penicillins and related structures. Advances in Drug Research., 2 (1964).Google Scholar
  17. Fit.-Jame., P., and R. Hancoc.: The initial structural lesion of penicillin action in Bacillus megateriu.. J. Cell Biol. 26, 65. (1965).Google Scholar
  18. Flemin., A.: On the antibacterial action of cultures of a penicillium with special reference to their use in the isolation of B. influenza.. Brit. J. Exptl. Pathol. 1., 226 (1929).Google Scholar
  19. Flemin., P. C., M. Goldne., and D. G. Glas.: Observations on the nature, distribution, and significance of cephalosporinase. Lancet 1963f, 1399.Google Scholar
  20. Flore., H. W.: Antibiotic products of a versatile fungus. Ann. Internal Med. 4., 480 (1955).CrossRefGoogle Scholar
  21. Gardne., A. D.: Morphological effects of penicillin on bacteria. Nature 14., 837 (1940).CrossRefGoogle Scholar
  22. Godzesk., C. W., G. Brie., and D. E. Pave.: Cephalothin, a new cephalosporin with a broad antibacterial spectrum. Appl. Microbiol. 1., 122 (1963).PubMedGoogle Scholar
  23. Gourevitc., A., S. Wolf., and J. Lei.: Effects of side chain on the activity of certain semisynthetic penicillins. Antimicrobial Agents and Chemotherapy, p. 577 ( M. Finlan. and G. Savag., eds. ). 1961.Google Scholar
  24. Gunsalu., I. C., and R. Y. Stanie., eds.: The bacteria. A treatise on structure and function (five volumes). New York: Academic Press 1960–1964.Google Scholar
  25. Hobb., G. L., K. Meye., and E. Chafe.: Observations on the mechanism of action of penicillin. Proc. Soc. Exptl. Biol. Med. 5., 281 (1942).CrossRefGoogle Scholar
  26. Holys., R. P., and H. E. Stavel.: Carboxy derivatives of penicillin. J. Am. Chem. Soc. 7., 4760 (1950).CrossRefGoogle Scholar
  27. Hughe., D. E.: The bacterial cytoplasmic membrane. J. Gen. Microbiol. 2., 39 (1962).PubMedCrossRefGoogle Scholar
  28. Ikaw., M., and E. E. Snel.: Cell wall composition of lactic acid bacteria. J. Biol. Chem. 23., 1376 (1960).PubMedGoogle Scholar
  29. Jeanlo., R. W., N. Sharo., and H. M. Flower.: The chemical structure of a disaccharide isolated from Micrococcus lysodeikticu. cell wall. Biochem. Biophys. Research Commun. 1., 20 (1963).CrossRefGoogle Scholar
  30. Jeanlo., R. W., and T. Osaw.: An improved stereoselective synthesis of 2-amino3-O-(D-1-carboxyethyl)-2-deoxy-D-glucose (Muramic acid). J. Org. Chem. 3., 448 (1965).PubMedCrossRefGoogle Scholar
  31. Kin., H. K., and H. Alexande.: The mechanical destruction of bacteria. J. Gen. Microbiol., 315 (1948).CrossRefGoogle Scholar
  32. Lederber., J.: Bacterial protoplasts induced by penicillin. Proc. Natl. Acad. Sci. U.S. 42, 57. (1956).Google Scholar
  33. Lode., B., G. G. F. Newto., and E. P. Abraha.: The cephalosporin C nucleus (7-aminocephalosporanic acid) and some of its derivatives. Biochem. J. 7., 408 (1961).PubMedGoogle Scholar
  34. Matsuhash., M., C. P. Dietric., and J. L. Strominge.: Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureu.: Role of sRn. and lipid intermediates. Proc. Natl. Acad. Sci. U.S. 54, 58. (1965).Google Scholar
  35. Meado., P. M., J. S. Anderso., and J. S. Strominge.: Enzymatic polymerization of Ud.-acetylglucosamine by a particulate enzyme from Staphylococcus aureu. and its inhibition by antibiotics. Biochem. Biophys. Research Commun. 1., 382 (1964).CrossRefGoogle Scholar
  36. Mitchel., P., and J. Moyl.: Liberation and osmotic properties of the protoplasts of Micrococcus lysodeikticu. and Sarcina lute.. J. Gen. Microbiol. 1., 512 (1956).PubMedCrossRefGoogle Scholar
  37. Mori., R. B., B. G. Jackso., E. H. Flyn., and R. W. Roesk.: Chemistry of cephalosporin antibiotics. I. 7-Aminocephalosporanic acid from cephalosporin C. J. Am. Chem. Soc. 8., 3400 (1962).CrossRefGoogle Scholar
  38. Mud., S., K. Polavitsk., T. F. Anderso., and L. A. Chamber.: Bacterial morphology as shown by the electron microscope. II. The bacterial cell wall in the genus bacillu.. J. Bacteriol. 4., 251 (1941).PubMedGoogle Scholar
  39. Muggleto., P. W., C. H. O’Callagha., and W. K. Steven.: Laboratory evaluations of a new antibiotic — cephaloridine. Brit. Med. J. 1964 I., 1234.Google Scholar
  40. Par., J. T., and M. J. Johnso.: Accumulation of labile phosphate in Staphylococcus aureu. grown in the presence of penicillin. J. Biol. Chem. 17., 585 (1949).PubMedGoogle Scholar
  41. Par., J. T.: Uridine-5’-pyrophosphate derivatives. Ii. Amino acid-containing derivatives. J. Biol. Chem. 19., 897 (1952).PubMedGoogle Scholar
  42. Par., J. T., and J. L. Strominge.: Mode of action of penicillin. Science 12., 99 (1957).PubMedCrossRefGoogle Scholar
  43. Perkin., H. R.: Chemical structure and biosynthesis of bacterial cell walls. Bacteriol. Rev. 2., 18 (1963).PubMedGoogle Scholar
  44. Polloc., M. R., and M. H. Richmon.: Function and Structure in Microorganisms. Cambridge: Cambridge University Press 1965.Google Scholar
  45. Pressma., R. S., V. Maranha., and H. Goldber.: Pseudomona. endocarditis: A therapeutic challenge. Ann. Internal. Med. 6., 809 (1964).CrossRefGoogle Scholar
  46. Razi., S., M. Argama., and J. Aviga.: Chemical composition of mycoplasma cells and membranes. J. Gen. Microbiol. 3., 477 (1963).PubMedCrossRefGoogle Scholar
  47. Razi., S., H. J. Morowit., and T. M. Terr.: Membrane subunits of Mycoplasma laidlawi. and their assembly to membrane-like structures. Proc. Natl. Acad. Sci. U.S. 5., 219 (1965).CrossRefGoogle Scholar
  48. Roger., H. J.: The bacterial cell wall. The result of adsorption, structure or selective permeability. Gen. Microbiol. 3., 19 (1963).CrossRefGoogle Scholar
  49. Roger., H. J.: The outer layers of bacteria: The biosynthesis of structure. Symposium Soc. Gen. Microbiol. 1., 186 (1965).Google Scholar
  50. Salto., M. R. J., and R. W. Horn.: Bacterial cell wall. II. Methods of preparation and some properties. Biochim. et Biophys. Acta., 177 (1951).Google Scholar
  51. Salto., M. R. J.: Studies of the bacterial cell wall. IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. Biochim. et Biophys. Acta 1., 512 (1953).Google Scholar
  52. Salto., M. R. J., and J. M. Ghuyse.: The structure of di-and tetrasaccharides released from cell walls by lysozyme and Streptomyce. Fl enzyme and the ß(1-+4)Nacetylhexosaminidase activity of these enzymes. Biochim. et Biophys. Acta 3., 552 (1959).Google Scholar
  53. Salto., M. R. J.: Microbial cell walls. In: Ciba Lectures in microbial biochemistry, p. 80–81. New York: John Wiley & Sons. 1960.Google Scholar
  54. Salto., M. R. J.: Cell wall structure synthesis. J. Gen. Microbiol. 2., 15 (1962).PubMedCrossRefGoogle Scholar
  55. Salto., M. R. J.: The bacterial cell wall. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  56. Salto., M. R. J., and J. H. Free.: Composition of the membranes isolated from several gram-positive bacteria. Biochim. et Biophys. Acta 107, 53. (1965).Google Scholar
  57. Saukkone., J. J.: Acid-soluble nucleotides of Staphylococcus aureu.: Massive accumulation of a derivative of cytidine diphosphate in the presence of penicillin. Nature 19., 816 (1961).PubMedCrossRefGoogle Scholar
  58. Shockma., G. D., J. J. Kol., and G. Toennie.: Relations between bacterial cell wall synthesis, growth phase, and autolysis. J. Biol. Chem. 23., 961 (1958).PubMedGoogle Scholar
  59. Shockma., G. D., J. J. Kol., B. Baka., M. J. Conove., and G. J. Toennie.: Protoplast membrane of Streptococcus faecali.. J. Bacteriol. 8., 168 (1963).PubMedGoogle Scholar
  60. Stewar., G. T.: The penicillin group of drugs, p. 98. New York: Elsevier Publ. Co. 1965.Google Scholar
  61. Strang., R. E., and L. H. Ken.: The isolation, characterization, and chemical synthesis of muramic acid. Biochem. J. 7., 333 (1959).PubMedGoogle Scholar
  62. Strominge., J.L.: The amino acid sequence in the uridine nucleotide-peptide from Staphylococcus aureu.. Compt. rend. tray. lab. Carlsberg 31, 18. (1959).Google Scholar
  63. Strominge., J. L., J. T. Par., and R. E. Thompso.: Composition of the cell wall of Staphylococcus aureu.: Its relation to the mechanism of action of penicillin. J. Biol. Chem. 23., 3263 (1959).PubMedGoogle Scholar
  64. Strominge., J. L.: Biosynthesis of bacterial cell walls. Federation Proc. 2., 134 (1962).Google Scholar
  65. Strominge., J. L., and J. Ghuyse.: On the linkage between teichoic acid and the glycopeptide in the cell wall of Staphylococcus aureu.. Biochem. Biophys. Research Commun. 1., 418 (1963).CrossRefGoogle Scholar
  66. Strominge., J. L., and D. L. Tippe.: Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Amer. J. Med. 3., 708 (1965).PubMedCrossRefGoogle Scholar
  67. Tippe., D. J., and J. L. Strominge.: Mechanism of action of penicillin: A proposal based on their structural similarity to acyl-D-alanyl-D-alanine Proc. Natl. Acad. Sci. U.S. 5., 1133 (1965).CrossRefGoogle Scholar
  68. Weibul., C.: Characterization of the protoplasmic constituents of Bacillus megaterium. J. Bacteriol. 6., 696 (1953).PubMedGoogle Scholar
  69. Weibul., C.: Osmotic properties of protoplasts of Bacillus megateriu.. Exp. Cell Research., 294 (1955).CrossRefGoogle Scholar
  70. Weibul., C., H. Beckman., and L. Bergstro.: Localization of enzymes in B. megaterium strain M. J. Gen. Microbiol. 2., 519 (1959).PubMedCrossRefGoogle Scholar
  71. Wic., W. E., and W. S. Boniec.: In vitro and in vivo laboratory evaluation of cephaloglycin and cephaloridine. Appl. Microbiol. 1., 248 (1965).PubMedGoogle Scholar
  72. Wis. jr., E. M., and J. T. Par.: Penicillin: Its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc. Natl. Acad. Sci. U.S. 5., 75 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Edwin H. Flynn
  • Carl W. Godzeski

There are no affiliations available

Personalised recommendations