Skip to main content

Composite Interphase

  • Chapter
Advanced Composite Materials

Abstract

The high performance characteristics of advanced composite materials depend not only on the physical properties of fiber and matrix but also upon the interfacial region that exists between these dissimilar components. This inter-facial region or interphase that is intermediate between the fiber phase and the matrix phase provides an important function in overall composite performance [1]. The interphase facilitates stress transfer from the moderately weak matrix resin to the high strength fiber and protects the fiber from environmental degradation. Stress can occur from differences in thermal expansion coefficients of fiber/matrix, cure shrinkage of thermoset matrices, or crystallization of thermoplastic matrices. Moreover the interphase can affect the matrix resin by preferential absorption of reactive monomer, oligomer or polymer or facilitate nucleation of crystalline high performance thermoplastic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Miller and H. Ishida, “Adhesive-Adherend Interface and Interphase”, in “Fundamentals of Adhesion”, L. H. Lee, editor, Plenum, N.Y. (in press).

    Google Scholar 

  2. T. Takahagi and A. Ishitani, in “Molecular Characterization of Composite Interfaces,” H. Ishida and G. Kumar, editors, Plenum Press, N.Y. (1985).

    Google Scholar 

  3. I. L. Kalnin and H. Jager, in “Carbon Fibers and Their Composites,” E. Fitzer, editor, Springer, Berlin Heideberg New York (1985).

    Google Scholar 

  4. Ibid. p. 64.

    Google Scholar 

  5. E. P. Plueddemann, “Silane Coupling Agents,” Plenum, N.Y. 1982.

    Book  Google Scholar 

  6. H. Ishida and J. L. Koenig, J. Col. Intf. Sci 64(3), 555 (1978).

    Article  Google Scholar 

  7. J. L. Koenig, “Chemically Modified Surfaces,” Volume 1, D. E. Leyden, editor, Gordon and Breach, N.Y. (1986).

    Google Scholar 

  8. L. V. Phillips and A. M. Hercules, “Chemically Modified Surfaces,” D. E. Leyden, editor, Gordon and Breach, N.Y. (1986).

    Google Scholar 

  9. A. T. DeBenedetto and P. J. Lex, Poly. Eng and Sci. 29(8), 543 (1989).

    Article  Google Scholar 

  10. M. R. Wertheimer and H. P. Schreiber, J. Appl. Poly. Sci., 26, 2087 (1981).

    Article  CAS  Google Scholar 

  11. M. Takayanagi, T. Kajiyama and T. Katayose, ibid., 27, 3903 (1982).

    Google Scholar 

  12. F. M. Logulla, Sr. and Y-T. Wu, U.S. 4,418,164 (11/29/83) Dupont.

    Google Scholar 

  13. K. K. Chawla, “Composite Materials,” p. 97, Springer, Berlin Heidelberg New York (1987).

    Book  Google Scholar 

  14. I. L. Kalnin and H. Jager, Chapter 1 in “Carbon Fibers and Their Composites,” E. Fitzer, editor, Springer, Berlin Heidelberg New York (1985) p. 66.

    Google Scholar 

  15. Reference 12, p. 157.

    Google Scholar 

  16. H. X. Nguyen, G. C. Weedon and H. W. Chang, SAMPE 34, 1603 (1989).

    CAS  Google Scholar 

  17. R. L. Hagenson, D. F. Register and D. A. Soules, ibid, 34, 2255 (1989).

    Google Scholar 

  18. L. T. Drzal, M. J. Rich, M. F. Koenig, P. F. Lloyd, J. Adhesion 16, 133 (1983).

    Article  CAS  Google Scholar 

  19. P. S. Theocaris, G. Spathis and B. Kefales, Colloid & Polym. Sci, 260, 837 (1982).

    Article  CAS  Google Scholar 

  20. Reference 1, p. 27.

    Google Scholar 

  21. F. S. Cheng, J. L. Kardos and T. L. Tolbert, SPE Journal 26, 62 (1970); J. L. Kardos, J. Adhesion, 4(1), (1972).

    CAS  Google Scholar 

  22. R. E. Lavengood and M. J. Michno, Jr. Proc. Div. Techn. Conf. Eng. Prop. Structure Div, SPE, 127 (1975).

    Google Scholar 

  23. J. L. Kardos, Chem Tech, July, p. 430 (1984).

    Google Scholar 

  24. D. L. Caldwell and D. A. Jarvie, SAMPE 33, 1268 (1988).

    CAS  Google Scholar 

  25. W. A. Fraser, F. H. Ancker, A. T. DeBenedetto and B. Elbirli, Poly. Comp, 4, 238 (1983).

    Article  CAS  Google Scholar 

  26. C. T. Necker, V. Krishnamurthy, M. W. Barsoum and I. L. Kamel, SAMPE 34, 2161 (1989).

    CAS  Google Scholar 

  27. W-L. Wu, SAMPE J, 26(2), 11 (1990).

    CAS  Google Scholar 

  28. J. P. Rabe, Angew. Chem. Int. Ed. Engl., 28(1), 117 (1989).

    Article  Google Scholar 

  29. J. L. Ackerman, Poly Prep, 29(1), 88 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pilato, L.A., Michno, M.J. (1994). Composite Interphase. In: Advanced Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35356-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35356-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08187-3

  • Online ISBN: 978-3-662-35356-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics