Skip to main content

Mechanisms of Na+, Cl, and HCO 3 Transport in the Proximal Tubule

  • Chapter
Nephrology
  • 8 Accesses

Abstract

The general purpose of this lecture/chapter is to provide an overview of the mechanisms mediating Na+, Cl, and HCO 3 transport in the proximal tubule of the mammalian kidney. Because this topic is so broad, attention will be focussed on four main issues concerning transport across the membranes of the proximal tubule cell: 1) mechanisms of acid secretion across the luminal membrane; 2) mechanisms of base exit across the basolateral membrane; 3) mechanisms of Cl entry across the luminal membrane; and 4) mechanisms for Cl exit across the basolateral membrane. For each of these topics, the properties of the major transport pathways determined largely (but not exclusively) on the basis of studies on isolated membrane vesicles will be correlated with the physiological roles of these same pathways as determined on the basis of studies on the intact tubule. Finally, a summary attempting to integrate these subcellular mechanisms into the overall functioning of the intact proximal tubule will be presented. Literature citations will be representative, rather than comprehensive, due to the time/space limitations imposed on this lecture/chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 154: 597–604

    PubMed  CAS  Google Scholar 

  2. Kinsella JL, Aronson PS (1980) Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol 238: F461 - F469

    PubMed  CAS  Google Scholar 

  3. Kinsella JL, Aronson PS (1981) Interaction of NH4 + and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am J Physiol 241: C220 - C226

    PubMed  CAS  Google Scholar 

  4. Kinsella JL, Aronson PS (1981) Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol 241: F374 - F379

    PubMed  CAS  Google Scholar 

  5. Kinsella JL, Aronson PS (1982) Determination of the coupling ratio for Na+-H+ exchange in renal microvillus membrane vesicles. Biochim Biophys Acta 689: 161–164

    Article  PubMed  CAS  Google Scholar 

  6. Aronson PS, Nee J, Suhm MA (1982) Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161–163

    Article  PubMed  CAS  Google Scholar 

  7. Aronson PS, Suhm MA, Nee J (1983) Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J Biol Chem 258: 6767–6771

    PubMed  CAS  Google Scholar 

  8. Mahnensmith RL, Aronson PS (1985) Interrelationships among quinidine, amiloride and lithium as inhibitors of the renal Na+-H+ exchanger. J Biol Chem 260: 12586–12592

    PubMed  CAS  Google Scholar 

  9. Barac-Nieto M, Murer H, Kinne R (1980) Lactate-sodium cotransport in rat renal brush border membranes. Am J Physiol 239: F496 - F506

    PubMed  CAS  Google Scholar 

  10. Blomstedt JW, Aronson PS (1980) pH gradient-stimulated transport of urate and paraaminohippurate in dog renal microvillus membrane vesicles. J Clin Invest 65: 931–934

    Google Scholar 

  11. Guggino SE, Martin GJ, Aronson PS (1983) Specificity and modes of the anion exchanger in dog renal microvillus membrane vesicles. Am J Physiol 244: F612 - F621

    PubMed  CAS  Google Scholar 

  12. Aronson PS (1983) Mechanisms of active H+ secretion in the proximal tubule. Am J Physiol 245: F647 - F659

    PubMed  CAS  Google Scholar 

  13. Nakhoul NL, Boron WF (1988) Acetate transport in the S3 segment of the proximal tubule and its effect on intracellular pH. J Gen Physiol 92: 395–412

    Article  PubMed  CAS  Google Scholar 

  14. Geibel J, Giebisch G, Boron WF (1989) Effects of acetate on luminal acidification processes in the S3 segment of the rabbit proximal tubule. Am J Physiol 257: F586 - F594

    PubMed  CAS  Google Scholar 

  15. Kinne-Saffran E, Kinne R (1974) Presence of bicarbonate-stimulated ATPase in the brush border microvillus membrane of the proximal tubule. Proc Soc Exp Biol Med 146: 751–753

    Article  PubMed  CAS  Google Scholar 

  16. Turrini F, Sabolic I, Zimolo Z, Moewes B, Burckhardt G (1989) Relation of ATPases in rat renal brush-border membranes to ATP-driven W secretion. J Membr Biol 107: 1–12

    Article  PubMed  CAS  Google Scholar 

  17. Preisig PA, Ives HE, Cragoe EJ Jr, Alpern RI, Rector FC Jr (1987) Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 80: 970–978

    Article  PubMed  CAS  Google Scholar 

  18. Nagami GT (1988) Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest 81: 159–164

    Article  PubMed  CAS  Google Scholar 

  19. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3− transport. J Gen Physiol 81: 53–94

    Article  PubMed  CAS  Google Scholar 

  20. Grassi SM, Aronson PS (1986) Na+/HCO3− cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem 261: 8778–8783

    Google Scholar 

  21. Soleimani M, Grassi SM, Aronson PS (1987) Stoichiometry of Na+-HCO3− cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest 79: 1276–1280

    Article  PubMed  CAS  Google Scholar 

  22. Soleimani M, Aronson PS (1989) Ionic mechanism of Na+-HCO3− cotransport in rabbit renal basolateral membrane vesicles. J Biol Chem 264: 18302–18308

    PubMed  CAS  Google Scholar 

  23. Soleimani M, Aronson PS (1989) Effects of acetazolamide on Na+-HCO3− cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest 83: 945–951

    Article  PubMed  CAS  Google Scholar 

  24. Yoshitomi K, Burckhardt B-Ch, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch 405: 360–366

    Article  PubMed  CAS  Google Scholar 

  25. Preisig PA, Alpern RI (1989) Basolateral membrane H-OH-HCO3 transport in the proximal tubule. Am J Physiol 256: F751 - F765

    PubMed  CAS  Google Scholar 

  26. Alpern RI, Chambers M (1987) Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. J Gen Physiol 89: 581–598

    Article  PubMed  CAS  Google Scholar 

  27. Kurtz I (1989) Basolateral membrane Na+/H+ antiport, Na+/base cotransport, and Na+-independent C1−/base exchange in the rabbit S3 proximal tubule. J Clin Invest 83: 616–622

    Article  PubMed  CAS  Google Scholar 

  28. Sasaki S, Marumo F (1989) Effects of carbonic anhydrase inhibitors on basolateral base transport of rabbit proximal straight tubule. Am J Physiol 257: F947 - F952

    PubMed  CAS  Google Scholar 

  29. Schild L, Giebisch G, Karniski L, Aronson PS (1986) Chloride transport in the mammalian proximal tubule. Pflugers Arch 407 (Suppl 2): 5156–5159

    Google Scholar 

  30. Seifter JL, Knickelbein R, Aronson PS (1984) Absence of Cl-OH exchange and Na-Cl cotransport in rabbit renal microvillus membrane vesicles. Am J Physiol 247: F753 - F759

    PubMed  CAS  Google Scholar 

  31. Karniski LP, Aronson PS (1985) Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci USA 82: 6362–6365

    Article  PubMed  CAS  Google Scholar 

  32. Baum M (1988) Effect of luminal chloride on cell pH in rabbit proximal tubule. Am J Physiol 254: F677 - F683

    PubMed  CAS  Google Scholar 

  33. Schild L, Aronson PS, Giebisch G (1990) Effects of apical membrane Cl−-formate exchange on cell volume in rabbit proximal tubule. Am J Physiol 258: F530 - F536

    PubMed  CAS  Google Scholar 

  34. Schild L, Giebisch G, Karniski LP, Aronson PS (1987) Effect of formate on volume reabsorption in the rabbit proximal tubule. J Clin Invest 79: 32–38

    Article  PubMed  CAS  Google Scholar 

  35. Karniski LP, Aronson PS (1987) Anion exchange pathways for CI- transport in rabbit renal microvillus membranes. Am J Physiol 253: F513 - F521

    PubMed  CAS  Google Scholar 

  36. Kuo S-M, Aronson PS (1988) Oxalate transport via the sulfate-HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263: 9710–9717

    PubMed  CAS  Google Scholar 

  37. Lücke H, Stange G, Murer H (1979) Sulfate-ion/sodium-ion cotransport by brush-border membrane vesicles from rat kidney cortex. Biochem J 182: 223–229

    PubMed  Google Scholar 

  38. Bello-Reuss E (1982) Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. Am J Physiol 326: 49–63

    CAS  Google Scholar 

  39. Cardinal J, Lapointe J-Y, Laprade R (1984) Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am J Physiol 247: F352 - F364

    PubMed  CAS  Google Scholar 

  40. Sasaki S, Ishibashi K, Yoshiyama N, Shiigai T (1988) KCI cotransport across the baso-lateral membrane of rabbit renal proximal straight tubule. J Clin Invest 81: 194–199

    Article  PubMed  CAS  Google Scholar 

  41. Welling PA, O’Neill RG (1990) Cell swelling activates basolateral Cl and K conductances in rabbit proximal tubule. Am J Physiol 258: F951 - F962

    PubMed  CAS  Google Scholar 

  42. Schild L, Aronson PS, Giebisch G (to be published) Basolateral transport pathways for K’ and CI- in the rabbit proximal tubule: effects on cell volume. Am J Physiol

    Google Scholar 

  43. Sasaki S, Yoshiyama N (1988) Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange. J Clin Invest 81: 1004–1011

    Google Scholar 

  44. Ishibashi Y, Rector FC Jr, Berry CA (1990) Chloride transport across the basolateral membrane of rabbit proximal convoluted tubules. Am J Physiol 258: F1569 - F1578

    PubMed  CAS  Google Scholar 

  45. Eveloff J, Warnock DG (1987) K-CI transport systems in rabbit renal basolateral membrane vesicles. Am J Physiol 252: F883 - F889

    PubMed  CAS  Google Scholar 

  46. Grassi SM, Holohan PD, Ross CR (1987) C1--HCO3− exchange in rat renal basolateral membrane vesicles. Biochim Biophys Acta 905: 475–484

    Article  Google Scholar 

  47. Chen PY, Verkman AS (1988) Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubule. Biochemistry 27: 655–660

    Article  PubMed  CAS  Google Scholar 

  48. Rector FC Jr (1983) Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 244: F461 - F471

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Aronson, P.S. (1991). Mechanisms of Na+, Cl, and HCO 3 Transport in the Proximal Tubule. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics