Skip to main content

Part of the book series: Ergebnisse der Mathematik und ihrer Grenzgebiete ((MATHE1,volume 2 ))

  • 61 Accesses

Abstract

In this chapter we shall occupy ourselves with the study of certain functions represented by either domain or surface integrals, with the purpose of establishing under what conditions such functions turn out to be integrable, or continuous, Hölder continuous, differentiable, etc. Among others, we shall study certain integrals which we can consider a natural extension of the ordinary potential either of a domain or of a single or double layer. This fact shows the importance of the contents of this chapter to the end of a systematic treatment of the theory of elliptic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, G.C. and E.R.C. Miles: Potential of general masses in single and double layers. The relative boundary value problems. Amer. J. Math. 53 (1931) 493–516. For other indications of previous works of these authors see also: G.C. Evans: Complements of potential theory. Amer. J. Math. 54 (1932) 213-234; 55 (1933) 29-49; 57 (1935) 623-626.

    Article  MathSciNet  Google Scholar 

  2. This result and its application to the case of ordinary potentials are contained in Calderon, A. P. and Zygmund, A., On the existence of certain singular integrals, Acta. Math. 88 (1952) 85–139. For application to the general case see for example C. Miranda [19] § 4.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Whitney: Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89. Functions differentiable on the boundaries of regions. Ann. of. Math. 35 (1934), 482-485.

    Article  MathSciNet  Google Scholar 

  4. E. Gagliardo: Caratterizzazione delle traccie sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Padova 27 (1957), 284–305.

    MathSciNet  MATH  Google Scholar 

  5. S. M. Nikol’skii: On imbedding, continuation and approximation theorems for differentiate functions of several variables. Usp. Mat. Nauk 16 no. 6, (1961) 63–144 (Russian); transl. in Russian Math. Surveys 16 no. 5., (1961), 55-104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miranda, C. (1970). Functions represented by integrals. In: Partial Differential Equations of Elliptic Type. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 2 . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35147-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35147-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-34819-2

  • Online ISBN: 978-3-662-35147-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics