Skip to main content

Experimental congestive heart failure due to myocardial infarction: Sarcolemmal receptors and cation transporters

  • Chapter
Current Topics in Heart Failure

Summary

Rats, subsequent to loss of a large amount of left ventricular free wall due to surgically-induced myocardial infarction, form a good model of congestive heart failure. Since depressed cardiac pump function is the hallmark of heart failure, it is suspected that decreased influx of Ca2+ into the cardiac cell is responsible for depressed contractile function. Because Ca2+ movements in the sarcolemmal membrane are known to involve Ca2+-channels, Na+-Ca2+ exchange, Ca2+-pump, Na+-K+ ATPase, β-adrenoceptors and α-adrenoceptors directly or indirectly, the status of these mechanisms was examined by employing rats at different degrees of congestive heart failure. The left coronary artery was ligated and hearts were examined 4, 8, and 16 weeks later; sham-operated animals served as controls. The number of Ca2+ channels in the myocardium was depressed in moderate and severe stages of heart failure. Furthermore, depressions in sarcolemmal Na+-Ca2+ exchange activity and β-adrenoceptor number were associated with the development of early stages of heart failure, whereas sarcolemmal Na+-K+ ATPase activity was decreased and the number of aadrenoceptors was increased at moderate and severe stages. The Ca2+-pump activities were not altered in failing hearts. Thus it appears that changes in Na+-Ca2+ exchange as well as β-adrenoceptors and Ca2+ channels may contribute towards decreasing Ca2+ influx at early and moderate stages of congestive heart failure, respectively. On the other hand, changes in α-adrenoceptors and Na+-K+ ATPase may act as compensatory mechanisms for maintaining Ca2+ influx at moderate and late stages of congestive heart failure.

The research work reported in this study was supported by a grant from the Manitoba Heart and Stroke Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzal N, Dhalla NS (1989) Depressed sarcoplasmic reticular Ca2 -transport in congestive heart failure secondary to myocardial infarction. J Mol Cell Cardiol 21 (SII):S 49

    Google Scholar 

  2. Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58: 26–37

    Google Scholar 

  3. Anversa PC, Beghi C, McDonald SL, Levicky V, Kikkawa Y, Olivetti G (1984) Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat. Am J Pathol 116: 504–513

    PubMed  CAS  Google Scholar 

  4. Bauer JA, Fung HL (1990) Effects of chronic glyceroyl trinitrate on left ventricular haemodynamics in a rat model of congestive heart failure: demonstration of a simple animal model for the study of in vivo tolerance. Cardiovasc Res 24: 198–203

    Article  PubMed  CAS  Google Scholar 

  5. Bajusz E, Jasmin GJ (1964) Histochemical studies on the myocardium following experimental interference with coronary circulation. I. Occlusion of the coronary artery. Acta Histochem 18: 222–237

    Google Scholar 

  6. Bester AJ, Bajusz E, Lochner AL (1972) Effect of ischaemia and infarction on the metabolism and function of the isolated perfused rat heart. Cardiovasc Res 6: 284–294

    Article  PubMed  CAS  Google Scholar 

  7. Bloomfield RA, Lauson HD, Cournand A, Breed ES, Richards Jr DW (1946) Recording of right heart pressures in normal subjects and in patients with chronic pulmonary disease and various types of cardio-circulatory disease. J Clin Invest 25: 639–664

    Article  Google Scholar 

  8. Braunwald E (1982) Historical overview and pathophysiologic considerations. In: Braunwald E, Mock MB, Watson J (eds) Congestive Heart Failure: Current Research and Clinical Applications. Grune and Stratton Inc, New York, pp 3–9

    Google Scholar 

  9. Burnett J, Kako P, Hu D, Heser D, Heublein D, Granger J, Opgenorth T, Reeder G (1985) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231: 1145–1147

    Article  Google Scholar 

  10. Clozel J-P, Holck M, Osterrieder W, Burkard W, Da Prada M (1987) Effects of chronic myocardial infarction on responsiveness to isoprenaline and the state of myocardial beta adrenoceptors in rats. Cardiovasc Res 21: 688–695

    Article  PubMed  CAS  Google Scholar 

  11. Defelice A, Frering A, Horan P (1989) Time course of hemodynamic changes in rats with healed severe myocardial infarction. Am J Physiol 257: H289 — H296

    PubMed  CAS  Google Scholar 

  12. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE (1982) Calcium movements in relation to heart function. Basic Res Cardiol 77: 117–139

    Article  PubMed  CAS  Google Scholar 

  13. Dixon IMC, Lee SL, Dhalla NS (1990) Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66: 782–788

    Article  PubMed  CAS  Google Scholar 

  14. Drexler H, Hirth C, Stasch H-P, Lu W, Neuser D, Just H (1990) Vasodilatory action of endogenous atrial natriuretic factor in a rat model of chronic heart failure as determined by monoclonal ANF antibody. Circ Res 66: 1371–1380

    Article  PubMed  CAS  Google Scholar 

  15. Dusek J, Rona G, Kaher DS (1971) Healing process in the marginal zone of an experimental myocardial infarct: findings in the surviving cardiac muscle cells. Am J Pathol 62: 321–338

    PubMed  CAS  Google Scholar 

  16. Fellenius E, Hansen CA, Mjos O, Neely JR (1985) Chronic infarction decreases maximum cardiac work and sensitivity of heart to extracellular calcium. Am J Physiol 249: H80 — H87

    PubMed  CAS  Google Scholar 

  17. Feild BJ, Russel Jr RO, Moraski RE (1974) Left ventricular size and function and heart size in the year following myocardial infarction. Circulation 50: 331–339

    Article  PubMed  CAS  Google Scholar 

  18. Fishbein MC, Maclean D, Maroko PR (1978) Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution. Am J Pathol 90: 57–70

    Google Scholar 

  19. Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E (1981) Left-ventricular diastolic pressure-volume relations in rats with healed myocardial infarction: effects on systolic function. Circ Res 49: 618–626

    Article  PubMed  CAS  Google Scholar 

  20. Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E (1982) Effects of hypertension on cardiac performance in rats with myocardial infarction. Am J Cardiol 50: 488–496

    Article  PubMed  CAS  Google Scholar 

  21. Fouad FM, Tarazi RC (1986) Restoration of cardiac function and structure by converting enzyme inhibition: possibilities and limitation of long-term treatment in hypertension and heart failure. J Cardiovasc Pharmacol 8 (51): S53 — S57

    Article  PubMed  Google Scholar 

  22. Gay R, Wool S, Paquin M, Goldman S (1986) Total vascular pressure-volume relationship in conscious rats with chronic heart failure. Am J Physiol 251: H483 — H489

    PubMed  CAS  Google Scholar 

  23. Geenen DL, Malhotra A, Scheuer J (1989) Regional variation in rat cardiac myosin isoenzymes and ATPase activity after infarction. Am J Physiol 256: H745 — H750

    PubMed  CAS  Google Scholar 

  24. Geenen DL, White TP, Lampman RM (1987) Papillary mechanics and cardiac morphology of infarcted rat hearts after training. J Appl Physiol 63 (1): 92–96

    PubMed  CAS  Google Scholar 

  25. Hodsman GP, Kohzuki M, Howes LG, Sumithran E, Tsunoda K, Johnston CI (1988) Neurohumoral responses to chronic myocardial infarction in rats. Circulation 78: 376–381

    Article  PubMed  CAS  Google Scholar 

  26. Hostetter TH, Pfeffer JM, Pfeffer MA, Dworkin DL, Braunwald E, Brenner BM (1983) Cardiorenal hemodynamics and sodium excretion in rats with myocardial infarction. Am J Physiol 245: H98 — H103

    PubMed  CAS  Google Scholar 

  27. Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM (1984) Role of Angiotensin II in the altered renal function of congestive heart failure. Circ Res 55: 669–675

    Article  PubMed  CAS  Google Scholar 

  28. Johns TNP, Olson BJ (1954) Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg 140: 675–682

    Google Scholar 

  29. Kaufman N, Gavan TL, Hill RW (1959) Experimental myocardial infarction in the rat. Arch Pathol 67: 482–488

    CAS  Google Scholar 

  30. Leblanc N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248: 372–376

    Article  PubMed  CAS  Google Scholar 

  31. Maclean D, Maroko PR, Fishbein MC, Braunwald E (1977) Effects of corticosteroids on myocardial infarct size and healing following experimental coronary occlusion. Am J Cardiol 39: 280

    Google Scholar 

  32. Mendez RE, Pfeffer JM, Ortola FV, Bloch KD, Anderson S, Seidman JG, Brenner BM (1987) Atrial natriuretic peptide transcription, storage, and release in rats with myocardial infarction. Am J Physiol 253: H1449 — H1455

    PubMed  CAS  Google Scholar 

  33. Mercadier JJ, Lopmpre AM, Wisnewsky C, Samuel J-L, Bercovici J, Swynghedauw B, Schwartz K (1981) Myosin isoenzymic changes of several models of rat cardiac hypertrophy. Circ Res 49: 525–532

    Article  PubMed  CAS  Google Scholar 

  34. Norman T, Coers CR (1960) Cardiac hypertrophy after coronary artery ligation in rats. Arch Pathol 69: 181–184

    PubMed  CAS  Google Scholar 

  35. Otani H, Otani H, Das DK (1988) a-adrenergic-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62: 8–17

    Google Scholar 

  36. Parmley WW (1985) Pathophysiology of congestive heart failure. Am J Cardiol 55: 9A - 14A

    Article  PubMed  CAS  Google Scholar 

  37. Parmley WW (1989) Pathophysiology and current therapy of congestive heart failure. J Am Coll Cardio113: 771–785

    Google Scholar 

  38. Pfeffer J, Pfeffer M (1988) Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am J Med 84: 37–44

    Article  PubMed  CAS  Google Scholar 

  39. Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57: 84–95

    Article  PubMed  CAS  Google Scholar 

  40. Pfeffer J, Pfeffer M, Braunwald E (1987) Hemodynamic benefits and prolonged survival with long-term captopril therapy in rats with myocardial infarction and heart failure. Circulation 75: I149 — I155

    PubMed  CAS  Google Scholar 

  41. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44: 503–512

    Article  PubMed  CAS  Google Scholar 

  42. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1984) Ventricular performance in rats with myocardial infarction and failure. Am J Med 76: 99–103

    Article  PubMed  CAS  Google Scholar 

  43. Pfeffer M, Pfeffer J, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72: 406–412

    Google Scholar 

  44. Raya TE, Gay RG, Aguirre M, Goldman S (1989) Importance of venodilatation in prevention of left ventricular dilatation after chronic large myocardial infarction in rats: a comparison of captopril and hydralazine. Circ Res 64: 330–337

    Article  PubMed  CAS  Google Scholar 

  45. Rubin SA, Fishbein MC, Swan HJC (1983) Compensatory hypertrophy in the heart after myocardial infarction in the rat. J Am Cell Cardiol 1: 1435–1441

    Article  CAS  Google Scholar 

  46. Schwartz A, Lindenmayer GE, Allen JC (1975) The sodium-potassium adenosine triphosphate: pharmacological, physiological and biochemical aspects. Pharmacol Rev 27: 3–134

    PubMed  CAS  Google Scholar 

  47. Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11: 398–407

    Article  PubMed  CAS  Google Scholar 

  48. Stanton RC, Brenner BM (1986) Role of the kidney in congestive heart failure. Acta Med Scand (5) 707: 21–25

    CAS  Google Scholar 

  49. Tsunoda K, Hodsman GP, Sumithran E, Johnston CI (1986) Atrial natriuretic peptide in chronic heart failure in the rat: a correlation with ventricular dysfunction. Circ Res 59: 256–261

    Article  PubMed  CAS  Google Scholar 

  50. Zimmer H-G, Martius PA, Marschner G (1989) Myocardial infarction in rats: effects of metabolic and pharmacologic interventions. Basic Res Cardiol 84: 332–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhalla, N.S., Dixon, I.M.C., Rupp, H., Barwinsky, J. (1991). Experimental congestive heart failure due to myocardial infarction: Sarcolemmal receptors and cation transporters. In: Gülch, R.W., Kissling, G. (eds) Current Topics in Heart Failure. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-30769-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30769-4_2

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0894-1

  • Online ISBN: 978-3-662-30769-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics