Skip to main content

Thermophysical Properties of Freon-20

  • Chapter

Part of the book series: National Standard Reference Data Service of the USSR: A Series of Property Tables ((NATIONAL STAND.,volume 8))

Abstract

Freon-20 (trichloromethane, chloroform) is a high-boiling cooling agent, and its thermophysical properties at elevated pressures have been considerably less scrutinized than other freons of the methane series. At low pressures, there are relatively extensive experimental data about the thermodynamic and transport properties of Freon-20. But this information is not generalized, and comprehensive reference data about the thermophysical properties of Freon-20 are lacking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altunin V. V. Method of calculating thermodynamic properties of real gas mixtures from a limited quantity of initial experimental data.—Teploenergetika, 1963, No. 4, p. 78–84.

    Google Scholar 

  2. Altunin V. V. Surface tension of freons-21, 22, and 23.—Thermophysical Properties of Freons. Gosstandart SSSR, GSSSD, 1977, 1.

    Google Scholar 

  3. Geller V. Z. Viscosity of Freon-21, 22, and 23.—Kholod. Tekh. Tekhnol., 1975, v. 22, p. 41–44.

    Google Scholar 

  4. Geller V. Z. Generalization of experimental data on thermal conductivity of Freons-21, 22, and 23.—Enzh. Fiz. Zh., 1977, v. 33, No. 1, p. 75–83.

    Google Scholar 

  5. Golubev I. F. Viscosity of Gases and Gaseous Mixtures. Phyzmatgiz, Moscow, 1959; available in English translation from NT1S, Springfield, Va., as TT 70–50022, 1959.

    Google Scholar 

  6. Golubev I. F., Gnezdilov N. E. Viscosity of Gaseous Mixtures. Izd-vo Standartov, Moscow, 1971.

    Google Scholar 

  7. Gurvich L. V., Khachuruzov G. A., Medvedev V. A., et al. Thermodynamic Properties of Individual Substances. Izd-vo AN SSSR, Moscow, 1962, v. 1–2.

    Google Scholar 

  8. Dorokhov A. P., Kiriyanenko A. A., Soloviov A. N.Surface tension of Freons.— PMTF, 1969, No. 1, p. 93–96.

    Google Scholar 

  9. Zhokhovsky M. K. About some laws governing the fusion of substances and their values for high pressure scale.—Izmer. Tekh., 1958, No. 2, p. 16–21.

    Google Scholar 

  10. Zhokhovsky M. K. Volume change during fusion under pressure.—Zh. Fiz. Khim., 1963, v. 37, p. 37, p. 2635–2639.

    Google Scholar 

  11. Zaalishvili Sh. D., Belousova Z. C., Kolesko L. E. Second virial coefficient of vapors and their mixtures. V. System Chloroform-Benzol.—Zh. Fiz. Khim., 1965, v. 39, p. 447–450.

    Google Scholar 

  12. Klimenko A. P., Krasnoouky C. I., Kolesnik V. M. The use of generalized equations for the calculation of thermodynamic properties of Freons on computers.—Kholod. Tekh. Tekhnol., 1976, v. 24, p. 75–79.

    Google Scholar 

  13. Lapidus I. I., Niselson L. A., Seifer A. L. Fundamental thermodynamic properties and characteristics of halogenated monoselenium and methane.—Thermophysical Characteristics of Substances. Gosstandart SSSR, GSSSD, 1968, 1, p. 103–135.

    Google Scholar 

  14. Perelshtein I. I. Generalized equations of state and vapor pressure curve for Freons.— Kholod. Tekh., 1967, No. 3, p. 27–33.

    Google Scholar 

  15. Perelshtein I. I., Parushin E. B. Generalized temperature dependence for saturated vapor pressure and density of boiling liquids.—In: Thermodynamic Properties of the Most Important Working Substances for Refrigerating Machines.—Tr. VNI (Kh) I, Moscow, 1976, p. 13–26.

    Google Scholar 

  16. Filipov L. P. Thermal conductivity of 50 organic liquids.—Vestn. MGU. Ser. Fiz. Mat. Yestestv. 1954, v. 8, No. 12, p. 45–48.

    Google Scholar 

  17. Filipov L. P. Method of calculation and prediction of properties of liquids and gases on the basis of theory of thermodynamic similarity.—In: Review of Thermophysical Properties of Substances, v. 2, Moscow, 1977.

    Google Scholar 

  18. Tsvetkov O. B., Laptiev U. A., Poliakova N. A. Thermal conductivity of gaseous Freons at atmospheric pressure.—In: Machines and Apparatus for Refrigeration and Cryogenic Engineering and Air Conditioning. Izd-vo LTI (Kh) P, Leningrad, 1976, p. 179–182.

    Google Scholar 

  19. Aihara A.—J. Chem. Soc. Japan, 1949, v. 70, p. 384–386.

    Google Scholar 

  20. Babb S. E. Parameters in the Simon equation relating pressure and melting temperature.—Rev. Modern. Phys., 1963, v. 35, p. 400–413.

    Article  ADS  MATH  Google Scholar 

  21. Bates O., Hazzard G., Palmer G. Thermal conductivity of liquids.—Ind. Eng. Chem., 1941, v. 33, p. 275–366.

    Article  Google Scholar 

  22. Beckmann E., Liesche O. Ebulioskopisches verhaben von Lösungsmitteln bei verchie-denen. Drucken.—Z. Phys. Chem., 1914, Bd. 88, S. 23–34.

    Google Scholar 

  23. Braune H., Linke R. Über die innere Reibung einiger Gase und Dampfe III.—Z. Phys. Chem., 1930, Bd. A 148, S. 195–215.

    Google Scholar 

  24. Bridgman P. W. The phase diagramm of eleven substances with especial reference to the melting curve.—Phys. Rev., 1914, v. 3, p. 153–203.

    Article  ADS  Google Scholar 

  25. Bridgman P. W.—Proc. Amer. Acad., 1941, v. 74, p. 12–28.

    Google Scholar 

  26. Coop I. E. The dielectric constants of ether-chloroform mixtures.—Trans. Farad. Soc, 1937, v. 33, p. 583–590.

    Article  Google Scholar 

  27. Dolezalek F., Schulze A. Zur Theorie der binären Gemische und Konzentrierten Lösungen. IV— Z. phys. ehem., 1913, Bd. 83, S. 45–50.

    Google Scholar 

  28. Drucker C, Jumeno E., Kangro W. Dampfdrucke flüssiger Stoffe bei niedrigen Temperaturen.—Z. Phys. Chem., 1915, Bd. 90, S. 513–552.

    Google Scholar 

  29. Djalalian W. Measurement of the thermalconductivity of liquid refrigerants at low temperatures.—Bull. Inst. Intern. Froid. Annexe 2. Turin, 1964, p. 153–165.

    Google Scholar 

  30. Eucken A. Über des Wärmeleitvermögen, die spezifische Wärme und die innere Reibung der Gase.—Phys. Z., 1913, Bd. 14, S. 324–332.

    Google Scholar 

  31. Fort R. J., Moore W. R. Adiabatic compressibilities of binary liquid mixtures.—Trans. Farad. Soc, 1965, v. 61, p. 2102–2111.

    Article  Google Scholar 

  32. Francis P. G., McGlashan M. L. Second virial coefficients of vapour mixtures.— Trans. Farad. Soc, 1955, v. 51, p. 593–599.

    Article  Google Scholar 

  33. Gelles E., Pitzer K. S. Thermodynamic functions of the halogenated methanes.—J. Am. Chem. Soc, 1953, v. 75, p. 5259–5267.

    Article  Google Scholar 

  34. Harrison D., Moelwyn-Hughes E. A. The heat capacities of certain liquids.—Proc. Roy. Soc, 1957, v. 239 A, p. 230–246.

    Article  ADS  Google Scholar 

  35. Held E., Drunen F. The measurement of the thermal conductivity of liquids.—Proc. VII Intern. Congr. Appl. Mech., 1948, v. 3, p. 79–90.

    Google Scholar 

  36. Herz W., Rathman W. Physikalische Konstanten einiger als Lösungsmittel wichtiger chlorierter Kohlen-Wasserstoffe.—Chem. Ztg., 1912, Bd. 36, S. 1417–1418.

    Google Scholar 

  37. Herz W., Neukirch E. Zur Kenntnis Kritischer Grössen.—Z. Phys. Chem., 1923, Bd. 104, S. 433–450.

    Google Scholar 

  38. Hutchinson E. On the measurement of the thermal conductivity of liquids.—Trans. Farad. Soc, 1945, v. 41, p. 87–90.

    Article  Google Scholar 

  39. JANAF thermochemical tables. 2nd ed./USA; Nat. Bur. Standards, NSRDS-NBS37, 1971.

    Google Scholar 

  40. Kudchadker A. P., Alani C. H., Zwolinski B. J. The critical constants of organic substances.—Chem. Rev., 1968, v. 68, p. 659–735.

    Article  Google Scholar 

  41. Kuenan J. P., Robson W. G. Observations on mixtures with minimum or maximum vapor pressure.—Phil. Mag., 1902, v. 4, p. 116–132.

    Article  Google Scholar 

  42. Lambert J. D. et al. Virial coefficients some of organic vapours.—Proc. Roy. Soc, 1949, v. A 196, p. 113–135.

    Article  ADS  Google Scholar 

  43. Lambert J. D., Staines E. N., Woods S. D. Thermal conductivities of organic vapours. —Proc. Roy. Soc, 1950, v. A 200, p. 262–271.

    Article  ADS  Google Scholar 

  44. Landolt—Börnstein. 6 Auflage. Bd. 2, Teil 5a. Springer Verlag, 1969, S. 195.

    Google Scholar 

  45. Mason H. Thermal conductivity of some industrial liquids from 0 to 100°C.—Trans. ASME, 1954, v. 5, p. 817–821.

    Google Scholar 

  46. Mathews J. H. The accurate measurement of heats of vaporization of liquids.—J. Amer. Chem. Soc, 1926, v. 48, p. 562–576.

    Article  Google Scholar 

  47. Miller Ch. C. The Stokes—Einstein laws for diffusion in solution.—Proc. Roy. Soc, 1924, v. A 106, p. 724–749.

    Article  ADS  Google Scholar 

  48. Pal A. K., Barua A. K. Intermolecular potentials and viscosities of some polar organic vapours.—Brit. J. Appl. Phys. (2), 1968, v. 1, p. 71–76.

    Google Scholar 

  49. Phillips T. W., Murphy K. P. Liquid viscosity of halogenated refrigerants.—ASHRAE Trans., 1971, v. 77, part. II, p. 146–156.

    Google Scholar 

  50. Phillips T. W., Murphy K. P. Liquid viscosity of halocarbons.—J. Chem. Eng. Data, 1970, v. 15, p. 304–307.

    Article  Google Scholar 

  51. Rappanecker K. Über die Reibungskoeffizienten von Dämpfen und ihre Abhängigkeit von der Temperatur.—Z. phys. Chem., 1910, Bd. 72, S. 695–722.

    Google Scholar 

  52. Rex A. Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser.— Z. phys. Chem., 1906, Bd. 55, S. 355–377.

    Google Scholar 

  53. Riedel L. Messung der Wärmeleitfähigkeit von organischen Flüssigkeiten, insbesondere von Kältemitteln.—Forsch. Geb. Ing.-Wes., 1940, Bd. 11, S. 340–347.

    Article  Google Scholar 

  54. Rodgers A. S., Chao J., Wilhoit R. C, Zwolinski B. Ideal gas thermodynamic Properties of eight Chloro- and fluoromethanes.—J. Phys. Chem. Ref. Data, 1974, v. 3, p. 117–140.

    Article  ADS  Google Scholar 

  55. Scatchard G., Raymond C. L. Vapor-liquid equilibrium. II Chloroform—Ethanol mixtures.—J. Amer. Chem. Soc, 1938, v. 60, p. 1278–1287.

    Article  Google Scholar 

  56. Schmidt G. C. Binäre Gemische.—Z. Phys. Chem., 1926, Bd. 121, S. 221–253.

    Google Scholar 

  57. Schulze A. Über das Gleichgewicht in kondensierten Systemen.—Z. phys. Chem., 1921, Bd. 97, S. 388–416.

    Google Scholar 

  58. Seshadri D. N., Viswanath D. S., Kuloor N. R. Thermodynamic properties of chloroform.—J. Indian Inst. Sei., 1968, v. 50, No. 3, p. 179–199.

    Google Scholar 

  59. Smyth C. P., Morgan S. O. The temperature dependence of the polarization in certain liquid mixtures.—J. Amer. Chem. Soc, 1928, v. 50, p. 1547–1560.

    Article  Google Scholar 

  60. Staveley L. A., Tupman W. I., Hart K. R. Some thermodynamic properties of the systems acetone + chloroform.—Trans. Farad. Soc, 1955, v. 51, p. 323–343.

    Article  Google Scholar 

  61. Stull D. R. Vapor pressure of pure substance organic compounds.—Ind. Eng. Chem., 1947, v. 39, p. 517–540.

    Article  Google Scholar 

  62. Suhrmann R. Über die Druckabhängigkeit der Däpfing einer um ihre vertikale Achse schwingenden Scheibe.—Z. Phys., 1923, Bd. 14, S. 56–62.

    Article  ADS  Google Scholar 

  63. Tauscher W. A. Messung der Wärmeleitfähigkeit flüssiger Kältemittel mit einem instationären Hitzdrathverfahren.—Kältetechnik, 1967, Bd. 19, S. 288–292.

    Google Scholar 

  64. Thorpe E., Rodger J. W. On the relations between the viscosity of liquids and their chemical nature.—Phil. Trans. Roy. Soc, 1897, v. A 189, p. 71 – 107.

    Article  ADS  Google Scholar 

  65. Titani T. The viscosity of vapours of organic compounds.—Bull. Chem. Soc. Japans, 1933, v. 8, p. 255–267.

    Article  Google Scholar 

  66. Tsakalotes D. E. Sur la hydrates des acides gras d’apres les mesures de viscosité de leurs solutions.—Compt. rend., 1908, v. 146, s. 1146–1149.

    Google Scholar 

  67. Vines R. G., Bennett L. A. The thermal conductivity of organic vapors.—J. Chem. Phys., 1954, v. 22, p. 360–366.

    Article  ADS  Google Scholar 

  68. Vogel H. Über die Viscosität einiger Gase und ihre Temperaturabhängigkeit bei tiefen Temperaturen.—Ann. Physik, 1914, Bd. 43, S. 1235–1272.

    Article  ADS  Google Scholar 

  69. Weber R. Untersuchungen über die Wärmeleitung in Flüssigkeiten.—Ann. Physik, 1895, Bd. 11, S. 1047–1060.

    Google Scholar 

  70. Williams J. W., Daniels F. The specific heats of binary mixtures.—J Amer. Chem. Soc, 1925, v. 47, p. 1490–1503.

    Article  Google Scholar 

  71. Wright R. Densities of saturated vapours.—J. Phys. Chem., 1932, v. 36, p. 2793–2795.

    Article  Google Scholar 

Download references

Authors

Editor information

Theodore B. Selover Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altunin, V.V., Geller, V.Z., Petrov, E.K., Rasskazov, D.C., Spiridonov, G.A. (1987). Thermophysical Properties of Freon-20. In: Selover, T.B. (eds) Thermophysical Properties of Freons. National Standard Reference Data Service of the USSR: A Series of Property Tables, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30483-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30483-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-30485-3

  • Online ISBN: 978-3-662-30483-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics