Skip to main content

Magnetic Properties of Minerals from the Red Sea Thermal Brines

  • Chapter

Abstract

Studies of the magnetic properties of sediment samples recovered from the thermal brine area of the Red Sea have been made. The minerals which have distinctive magnetic signatures, particularly on heating, are goethite, lepidocrocite, siderite, manganosiderite, pyrite, hematite and small quantities of a ferrimagnetic mineral, which is probably maghemite.

The following reactions take place during heating in air:

  1. (a)

    goethite \( \mathop \to \limits_{{{300}^ \circ }C} \) hematite

    The characteristic thermoremanent magnetization found in many goethites was not observed in these samples.

  2. (b)

    lepidocrocite \( \mathop \to \limits_{{{250}^ \circ }C} \) maghemite \( \mathop \to \limits_{{{450}^ \circ }C} \) hematite

    The development and breakdown of maghemite is very characteristic magnetically.

  3. (c)

    siderite \( \mathop \to \limits_{{{500}^ \circ }C} \) magnetite

    On cooling, the magnetite acquires a strong magnetization at its Curie temperature (580°C).

  4. (d)

    manganosiderite \( \mathop \to \limits_{{{500}^ \circ }C} \) jacobsite

    Jacobsite acquires a strong magnetization upon cooling. The Curie point is less than 580°C, depending upon the amount of substitution of manganese for iron in the magnetite structure.

  5. (e)

    pyrite \( \mathop \to \limits_{{{400}^ \circ }C} \) maghemite \( \mathop \to \limits_{{{450}^ \circ }C} \) hematite

    During heating a strong magnetic deflection is observed through the temperature range where maghemite is one of the mineral phases.

Hematite is present in two of the cores recovered from the Atlantis II Deep. The magnetic properties indicate that this material is coarse-grained (>0.5μd). By contrast the hematite formed chemically during the heating experiments is fine-grained (<0.5μd). A ferrimagnetic mineral, probably maghemite, is present in many of the samples examined. Most of this material is destroyed by heating above 500°C. The absence of an observable Neel temperature effect in the goethites at 120°C is attributed to the small grain sizes, making much of the material superparamagnetic at room temperature. Other data indicate that much of the goethite is in particles less than 100Å.

Woods Hole Oceanographic Institution Contribution No. 2200.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bannerjee, S. K.: On the transition of magnetite to haematite and its implication to rock magnetism. Journal Geomagnetism and Geoelectricity. 17, 357 (1965).

    Article  Google Scholar 

  • Bannerjee, S. K.: Origin of weak ferromagnetism and remanence in natural cassiterite crystals. American Geophysical Union Transaction. 49, 135 (1968).

    Google Scholar 

  • Creer, K. M.: Superparamagnetism in red sandstones. Geophysical Journal. 5, 16 (1961).

    Article  Google Scholar 

  • Creer, K. M.: On the origin of the magnetization or red beds. Journal Geomagnetism and Geoelectricity. 13, 68 (1962).

    Google Scholar 

  • David, I. and A. J. E. Welch: The oxidation of magnetite and related spinels. Constitution of gamma ferric oxide. Trans. Faraday Soc. 52, 1642 (1956).

    Article  Google Scholar 

  • Ford, W. E.: (1917) quoted in W. A. Deer, R. A. Howie, J. Zussman. Rock-Forming Minerals. John Wiley and Sons, Inc., New York, 371 p. (1962).

    Google Scholar 

  • Fuller, M. D. and K. Kobayashi: Identification of magnetic phases in certain rocks by low-temperature analysis. In: Methods in Paleomagnetism, D. W. Collinson, K. M. Creer, S. K. Runcorn (eds.), 529 Elsevier Press, London (1967).

    Google Scholar 

  • Gheith, M. A.: Differential thermal analysis of certain oxides and oxide hydrates. American Journal of Science. 250, 677 (1952).

    Article  Google Scholar 

  • Huggett, J.: Application de l’analyse thermomagnétique à l’étude des oxydes et des minerais de fer. Annal. de Chemie. 11, 447 (1929).

    Google Scholar 

  • Huggett, J. and G. Chaudron: Etudes thermomagnétique de quelques minerais de fer. Comptes Rendus de l’Académie des Sciences. 186, 694 (1928).

    Google Scholar 

  • Kelly, W. C.: Applications of D.T.A. to identification of the natural hydrous ferric oxides. American Mineralogist. 41, 353 (1956).

    Google Scholar 

  • Kopp, O. C. and P. F. Kerr: Differential thermal analysis of pyrite and marcasite. American Mineralogist. 43, 1079 (1958).

    Google Scholar 

  • Kulp, J. L., P. Kent, and P. F. Kerr: Thermal study of the Ca-Mg-Fe carbonate minerals. American Mineralogist. 36, 643 (1951).

    Google Scholar 

  • Kulp, J. L. and A. F. Trites: Differential thermal analysis of natural hydrous ferric oxides. American Mineralogist. 36, 23 (1951).

    Google Scholar 

  • Kulp, J. L., H. D. Wright, and R. J. Holmes: Thermal study of rhodochrosite. American Mineralogist. 34, 195 (1949).

    Google Scholar 

  • Lepp, H.: Stages in the oxidation of magnetite. American Mineralogist. 42, 679 (1957).

    Google Scholar 

  • MacKenzie, P. C.: The Differential Thermal Investigation of Clays. Mineralogical Society, London (1957).

    Google Scholar 

  • Mason, B.: The mineralogical aspects of the system FeO-Fe2O3-MnO-Mn2O3. Geol. För. Förh. Stockholm. 65, 97 (1943).

    Article  Google Scholar 

  • Michel, A. and G. Chaudron: Etude du sesquioxyde de fer cubique stabilise. Comptes Rendus de l’Académie des Sciences, Paris. 201, 1191 (1935).

    Google Scholar 

  • Miller, A. R., D. C. Densmore, E. T. Degens, J. C. Hathaway, F. G. Manheim, P. F. McFarlin, R. Pocklington, and A. Jokela: Hot brines and recent iron deposits in deeps of the Red Sea. Geochimica et Cosmochimica Acta. 30, 341 (1966).

    Article  Google Scholar 

  • Mutch, T. A.: Abundances of magnetic spherules in Silurian and Permian salt samples. Earth and Planetary Science Letters. 1, 325 (1966).

    Article  Google Scholar 

  • Nicholls, G. D.: The mineralogy of rock magnetism. Phil. Mag. suppl. 4, 113 (1955).

    Google Scholar 

  • Rowland, R. A. and E. C. Jones: Variations in differtial thermal analysis curves of siderite. American Mineralogist. 34, 550 (1949).

    Google Scholar 

  • Schmidt, E. R. and F. H. S. Vermaas: Differential thermal analysis and cell dimensions of some natural magnetites. American Mineralogist. 40, 422 (1955).

    Google Scholar 

  • Shinjo, T.: Mössbauer effect in antiferromagnetic fine particles. Journal Physical Soc. Japan. 21, 917 (1966).

    Article  Google Scholar 

  • Smith, R. W. and M. Fuller: Alpha hematite: stable remanence and memory. Science. 156, 1130 (1967).

    Article  Google Scholar 

  • Strangway, D. W., B. E. McMahon, and R. M. Honea: Stable magnetic remanence in antiferromagnetic goethite. Science. 158, 785 (1967).

    Article  Google Scholar 

  • Van Hook, H. J. and K. L. Keith: The system Fe3O4-Mn3O4. American Mineralogist. 43, 69 (1958).

    Google Scholar 

  • Yun, I.: Experimental studies on magnetic and crystallographic characters of Fe-bearing manganese oxides. Mem. Coll. Sci. Univ. of Kyoto, B. 25, 125 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strangway, D.W., Mc Mahon, B.E., Bischoff, J.L. (1969). Magnetic Properties of Minerals from the Red Sea Thermal Brines. In: Degens, E.T., Ross, D.A. (eds) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-28603-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-28603-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-27120-9

  • Online ISBN: 978-3-662-28603-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics