Until now this book has been concerned primarily with multiplicative number theory, a study of arithmetical functions related to prime factorization of integers. We turn now to another branch of number theory called additive number theory. A basic problem here is that of expressing a given positive integer n as a sum of integers from some given set A, say
$$A = \left\{ {{a_1},{a_2},...} \right\}$$
, where the elements a i are special numbers such as primes, squares, cubes, triangular numbers, etc. Each representation of n as a sum of elements of A is called a partition of n and we are interested in the arithmetical function A(n) which counts the number of partitions of i into summands taken from A. We illustrate with some famous examples.


Partition Function Recursion Formula Arithmetical Function Combinatorial Proof Partition Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Tom M. Apostol
    • 1
  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations