Studies of the Erythroid Inductive Microenvironment in Vitro

  • Gary van Zant
  • Eugene Goldwasser
  • Nancy Pech


Hemopoietic inductive microenvironments, associated with the stroma of blood-forming tissues, demonstrate specificity in regulating blood cell formation (7, 8, 25). The inductive influences of microenvironments are radio-resistant, and their distribution can be mapped in radiated mice or rats injected with pluripotent stem cells (14). Such cells, depending on the microenvironment in which they lodge, give rise to at least three colony types: predominantly erythroid, granulocytic, or megakaryocytic (8). The influence of the microenvironment on the pluripotent stem cell is not sufficient for erythroid colony development. Without erythropoietin (epo), pluripotent stem cells in an erythroid-inductive microenvironment develop into microscopic colonies of apparently undifferentiated cells (4, 8). In the mouse spleen, erythroid colonies outnumber granulocytic colonies 3 to 1 whereas, in the bone marrow. granulocytic colonies outnumber erythroid colonies 2 to 1 (8). The rat spleen supports the growth of erythroid colonies only (18).


Marrow Cell Pluripotent Stem Cell Spleen Cell Mouse Spleen Thymus Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Basford, N. L., and Goodman, J. W. Effects of lymphocytes from the thymus and lymph nodes on differentiation of hemopoietic spleen colonies in irradiated mice. J. Cell. Physiol., 84: 37, 1974.PubMedCrossRefGoogle Scholar
  2. (2).
    Ben-Ishay, Z., and Yoffey, J. M. Reticular cells of erythroid islands of rat bone marrow in hypoxia and rebound. J. Reticuloendothelial Soc., 10: 482, 1971.Google Scholar
  3. (3).
    Bessis, M., and Breton-Gorius, J. Iron metabolism in the bone marrow as seen by electron microscopy: A critical review. Blood, 19: 635, 1962.PubMedGoogle Scholar
  4. (4).
    Bleiberg, I., Liron, M., and Feldman, M. Reversion by erythropoietin of the suppression of erythroid clones caused by transfusion-induced polycythaemia. Transplantation, 3: 706, 1965.PubMedCrossRefGoogle Scholar
  5. (5).
    Chan, S. H., and Metcalf, D. Local production of colony stimulating factor within the bone marrow: Role of non-hematopoietic cells. Blood, 40: 646, 1972.PubMedGoogle Scholar
  6. (6).
    Chan, S. H., and Metcalf, D. Local and systemic control of granulocytic and macrophage progenitor cell regeneration after irradiation. Cell Tissue Kinet., 6: 185, 1973.PubMedGoogle Scholar
  7. (7).
    Curry, J. L., and Trentin, J. J. Hemopoietic spleen colony studies. I. Growth and differentiation. Dev. Biol., 15: 395, 1967.PubMedCrossRefGoogle Scholar
  8. (8).
    Curry, J. L., Trentin, J. J., and Wolf, N. Hemopoietic spleen colony studies. II. Erythropoiesis. J. Exp. Med., 125: 703, 1967.PubMedCrossRefGoogle Scholar
  9. (9).
    Dexter, T. M., and Lajtha, L. G. Proliferation of hemopoietic stem cells in vitro. Brit. J. Haematol., 28: 525, 1974.CrossRefGoogle Scholar
  10. (10).
    Freidenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., and Keiliss-Borok, I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Transplantation, 17: 331, 1974.CrossRefGoogle Scholar
  11. (11).
    Goldwasser, E., Eliason, J. F., and Sikkema, D. An assay for erythropoietin in vitro at the milliunit level. Endocrinology, 97:315, 1975.PubMedCrossRefGoogle Scholar
  12. (12).
    Gross, M., and Goldwasser, E. On the mechanism of erythropoietin-induced differentiation. IX. Induced synthesis of 9S ribonucleic acid and of hemoglobin. J. Biol. Chem., 246: 2480, 1971.PubMedGoogle Scholar
  13. (13).
    Hodgson, G., and Eskuche, I. Study of the effects of chemotherapeutic agents on the “early” and “late” responses to erythropoietin. Proc. Soc. Exp. Biol. Med., 127: 328, 1968.PubMedGoogle Scholar
  14. (14).
    Jenkins, V. K., Trentin, J. J., and Wolf, N. S. Radioresistance of the splenic hemopoietic inductive microenvironments (HIM). Radiat. Res., 43: 212, 1970.Google Scholar
  15. (15).
    Krantz, S. B., and Goldwasser, E. On the mechanism of erythropoietin-induced differentiation. IV. Some characteristics of erythropoietin action on hemoglobin synthesis in marrow cell culture. Biochim. Biophys. Acta, 108: 455, 1965.PubMedCrossRefGoogle Scholar
  16. (16).
    Lord, B. I., and Schofield, R. The influence of thymus cells in hemopoiesis: Stimulation of hemopoietic stem cells in a syngeneic, in vivo, situation. Blood, 42:395, 1973.Google Scholar
  17. (17).
    Matoth, Y., and Ben-Porath, E. Effect of erythropoietin on mitotic rate of erythroblasts in bone marrow cultures. J. Lab. Clin. Med., 54: 722, 1959.Google Scholar
  18. (18).
    Miyake, T., Kung, C. K. -H., and Goldwasser, E. Unpublished.Google Scholar
  19. (19).
    Rauchwerger, J. M., Gallagher, M. T., and Trentin, J. J. Role of the hemopoietic inductive microenvironments (HIM) in xenogeneic bone marrow transplantation. Transplantation, 15: 610, 1973.PubMedCrossRefGoogle Scholar
  20. (20).
    Roseman, J. X-ray resistant cell required for the induction of in vitro antibody formation. Science, 165: 1125, 1969.PubMedCrossRefGoogle Scholar
  21. (21).
    Seki, M. Hematopoietic colony formation in a macrophage layer provided by intraperitoneal insertion of cellulose acetate membrane. Transplantation, 16: 544, 1973.PubMedCrossRefGoogle Scholar
  22. (22).
    Stanley, E. R., Hansen, G., Woodcock, J., and Metcalf, D. Colony stimulating factor and the regulation of granulopoiesis and macrophage production. Fed. Proc., 34: 2272, 1975.PubMedGoogle Scholar
  23. (23).
    van Zant, G. E., Goldwasser, E., and Baron, J. M. Study of hemopoietic microenvironment in vitro. Nature (London), 260: 609, 1976.CrossRefGoogle Scholar
  24. (24).
    van Zant, G. E., and Goldwasser, E. Unpublished.Google Scholar
  25. (25).
    Weiss, L. The structure of bone marrow: Functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia: An electron microscope study. J. Morphol., 117: 467, 1965.Google Scholar
  26. (26).
    Wilson, F. D., O’Grady, L., McNeill, C. J., and Munn, S. L. The formation of bone marrow derived fibroblastic plaques in vitro: Preliminary results contrasting these populations to CFU-C. Exp. Hematol., 2: 343, 1974.PubMedGoogle Scholar
  27. (27).
    Wolf, N. S., and Trentin, J. Hemopoietic colony studies. V. Effect of hemopoietic organ stroma on differentation of pluripotent stem cells. J. Exp. Med., 127: 205, 1968.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Gary van Zant
  • Eugene Goldwasser
  • Nancy Pech

There are no affiliations available

Personalised recommendations