The Regulatory Role of the Macrophage in Normal and Neoplastic Hemopoiesis

  • J. Kurland
  • M. A. S. Moore


The granulocyte-macrophage progenitor cell (colony-forming unit culture, CFU-c) can be detected by its ability to undergo clonal proliferation in semisolid medium when provided with stimulatory macromolecules operationally termed colony-stimulating factor (CSF) (3, 26, 35). A similar if not identical class of molecules also stimulates the proliferation of a precursor cell solely committed to macrophage differentiation, the colony-forming unit-peritoneal macrophage (CFU-pm) (21, 23). The principal cells capable of elaborating CSF have been identified as the monocyte (7, 29) or tissue macrophage (11, 14, 29), and therefore the control of granulopoiesis and macrophage production has been postulated to occur through a positive feedback involving the action of CSF on the two hemopoietic progenitor cells, CFU-c and CFU-pm (21, 27). The requirement for CSF of both the CFU-c and CFU-pm, and the inability of CSF to influence the clonal proliferation of two other hemopoietic cells capable of growth in soft agar (the B-lymphocyte colony-forming cell and the murine myelomonocytic leukemic cell line, WEHI-3 (38)), suggest cell-type specificity of this regulator of in vitro granulopoiesis (21). However, it is becoming increasingly apparent that the control of steady-state granulopoiesis and the response of the system to perturbation cannot be accounted for solely on the basis of variations in CSF levels, and that possible inhibitory influences may play an important role in counteracting the proliferative stimulus of CSF.


Colony Formation Mouse Bone Marrow Peritoneal Exudate Cell Hemopoietic Cell Clonal Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Alexander, P., and Evans, R. Endotoxin and double stranded RNA renders macrophages cytotoxic. Nature (London), New Biol., 232: 76, 1971.Google Scholar
  2. (2).
    Bach, F. H., Alter, B. J., Solliday, S., Zoschke, D. C., and Janis, M. Lymphocyte reactivity in vitro. II. Soluble reconstitution factor permitting response of purified lymphocytes. Cell. Immunol., 1: 219, 1970.PubMedCrossRefGoogle Scholar
  3. (3).
    Bradley, T. R., and Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci., 44: 287, 1966.PubMedCrossRefGoogle Scholar
  4. (4).
    Bray, H. A., Gordon, D., and Morley, J. Role of prostaglandins in reactions of cellular immunity. Br. J. Pharm., 52:453pp., 1974.Google Scholar
  5. (5).
    Calderon, J., Williams, R. T., and Unanue, E. R. An inhibitor of cell proliferation released by cultures of macrophages. Proc. Natl. Acad. Sci. U.S.A., 71: 4273, 1974.PubMedCrossRefGoogle Scholar
  6. (6).
    Calderon, J., and Unanue, E. R. Two biological activities regulating cell proliferation found in cultures of peritoneal exudate cells. Nature (London), 253: 359, 1975.CrossRefGoogle Scholar
  7. (7).
    Chervenick, P. A., and LoBuglio, A. F. Human blood monocytes: Stimulators of granulocyte and mononuclear colony formation in vitro. Science, 178: 164, 1972.PubMedCrossRefGoogle Scholar
  8. (8).
    Darzynkiewicz, Z., Traganos, F., Sharpless, T., and Melamed, M. R. Lymphocyte stimulation: A rapid multiparameter analysis. Proc. Natl. Acad. Sci. U.S.A.,(in press).Google Scholar
  9. (9).
    Darzynkiewicz, Z., Traganos, F., Friend, C., Sharp-less, T., and Melamed, M. R. Nuclear chromatin changes during erythroid differentiation of Friend virus-induced leukemic cells. Exp. Cell Res., 99: 301, 1976.PubMedCrossRefGoogle Scholar
  10. (10).
    Diener, E., Shortman, K., and Russel, P. Induction of immunity and tolerance in vitro in the absence of phagocytic cells. Nature (London), 225: 731, 1970.CrossRefGoogle Scholar
  11. (11).
    Eaves, A. C., and Bruce, W. R. In vitro production of colony stimulating activity. I. Exposure of mouse peritoneal cells to endotoxin. Cell Tissue Kinet., 7:19, 1970.Google Scholar
  12. (12).
    Ferreira, S. H., Moncada, S., and Vane, J. R. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nature (London), New Biol., 231: 237, 1971.CrossRefGoogle Scholar
  13. (13).
    Grey, I., and Waksman, B. H. Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of the potentiating mediator(s). J. Exp. Med., 136: 143, 1972.CrossRefGoogle Scholar
  14. (14).
    Golde, D. W., Finley, T. N., and Cline, H. J. Production of colony stimulating factor by human macrophages. Lancet, 2: 1397, 1972.PubMedCrossRefGoogle Scholar
  15. (15).
    Hersch, E. M., and Harris, J. E. Macrophage-lymphocyte interactions in the antigen induced blastogenic response of human peripheral blood leucocytes. J. Immunol., 100: 1184, 1968.Google Scholar
  16. (16).
    Hoffman, M., and Dutton, R. W. Immune response restoration with macrophage culture supernatants. Science, 172: 1047, 1971.CrossRefGoogle Scholar
  17. (17).
    Holtermann, O. A., Klein, E., and Casale, G. P. Selective cytotoxicity of peritoneal leucocytes for neoplastic cells. Cell. Immunol., 9: 339, 1975.CrossRefGoogle Scholar
  18. (18).
    Ichikawa, Y., Pluznik, D. H., and Sachs, L. Feedback inhibition of the development of macrophage and granulocyte colonies. I. Inhibition by macrophages. Proc. Natl. Acad. Sci. U.S.A., 58: 1480, 1967.PubMedCrossRefGoogle Scholar
  19. (19).
    Keller, R. Modulation of cell proliferation by macrophages: A possible function apart from cytotoxic tumor rejection. Br. J. Cancer, 30: 401, 1974.CrossRefGoogle Scholar
  20. (20).
    Kirchner, H., Holden, H. T., and Herberman, R. B. Inhibition of in vitro growth of lymphoma cells by macrophages from tumor bearing mice. J. Nat. Cancer Inst., 55: 971, 1975.PubMedGoogle Scholar
  21. (21).
    Kurland, J., and Moore, M. A. S. Modulation of hemopoiesis by prostaglandins. Exp. Hematol. (in press).Google Scholar
  22. (22).
    Kurland, J., Traganos, F., Darzynkiewicz, C., and Moore, M. A. S. Macrophage mediated suppression of neoplastic hemopoietic proliferation. Nature (London) (submitted for publication).Google Scholar
  23. (23).
    Lin, H., and Stewart, C. C. Colony formation by mouse peritoneal exudate cells in vitro. Nature (London), New Biol., 243: 176, 1973.Google Scholar
  24. (24).
    Mclvor, K. L., and Weiser, R. S. Mechanisms of target cell destruction by alloimmune peritoneal cells. Immunology, 20: 315, 1971.Google Scholar
  25. (25).
    Melson, H., Kearney, G., Gruca, S., and Seljelid, R. Evidence for a cytolytic factor released by macrophages. J. Exp. Med., 140: 1085, 1974.CrossRefGoogle Scholar
  26. (26).
    Metcalf, D., and Moore, M. A. S. Hemopoietic Cells. Amsterdam: North-Holland Publishing Company, 1971.Google Scholar
  27. (27).
    Moore, M. A. S., and Kurland, J. Regulation of granulopoiesis. In Viza, D., and Muller-Berat, N., eds., Progress in Differentiation Research. Amsterdam: Elsevier/North-Holland Biomedical Press, p. 483, 1976.Google Scholar
  28. (28).
    Moore, M. A. S., Kurland, J., and Broxmeyer, H. The granulocytic-monocytic stem cell. In Cairnie, A. B., Lala, P. K., and Osmond, D. G., eds., Stem Cells of Renewing Cell Populations. New York: Academic Press, p. 181, 1976.CrossRefGoogle Scholar
  29. (29).
    Moore, M. A. S., and Williams, N. Physical separation of colony stimulating cells from in vitro colony forming cells in hemopoietic tissue. J. Cell. Physiol., 80: 195, 1972.PubMedCrossRefGoogle Scholar
  30. (30).
    Nathan, C. F., and Terry, W. D. Differential stimulation of murine lymphoma growth in vitro by normal and BCG-activated macrophages. J. Exp. Med., 142: 887, 1975.PubMedCrossRefGoogle Scholar
  31. (31).
    Nelson, D. S. Production by stimulated macrophages of factors depressing lymphocyte transformation. Nature (London), 246: 306, 1973.CrossRefGoogle Scholar
  32. (32).
    Oppenheim, J. J., Leventhal, B. G., and Hersch, E. M. The transformation of column purified lymphocytes with nonspecific and specific antigenic stimuli. J. Immunol., 101: 262, 1968.PubMedGoogle Scholar
  33. (33).
    Opitz, H. G., Niethammer, D., Lemke, H., Flad, H. D., and Huget, R. Biochemical characterization of a factor released by macrophages. Cell. Immunol., 16: 379, 1975.PubMedCrossRefGoogle Scholar
  34. (34).
    Parkhouse, R. M. E., and Dutton, R. W. Inhibition of spleen DNA synthesis by autologous macrophages. J. Immunol., 97: 663, 1966.PubMedGoogle Scholar
  35. (35).
    Pike, B. L., and Robinson, W. A. Human bone marrow colony growth in agar. J. Cell. Physiol., 76: 77, 1970.PubMedCrossRefGoogle Scholar
  36. (36).
    Quesenberry, P., Morley, A., Stohlman, F., Rickard, K., Howard, D. and Smith, M. Effect of endotoxin on granulopoiesis and colony stimulation factor. New Eng. J. Med., 286: 227, 1972.PubMedCrossRefGoogle Scholar
  37. (37).
    Traganos, F., Darzynkiewicz, Z., Sharpless, T., and Melamed, M. R. Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. J. Histochem. Cytochem. (in press).Google Scholar
  38. (38).
    Warner, N. L., Moore, M. A. S., and Metcalf, D. A transplantable myelomonocytic leukemia in Balb/c mice: Cytology, karyotype and muramidase content. J. Nat. Cancer Inst., 43: 953, 1969.Google Scholar
  39. (39).
    Weir, D. H. Handbook of Experimental Immunology. Philadelphia: Davies Pub. Company, p. 1019, 1967.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • J. Kurland
  • M. A. S. Moore

There are no affiliations available

Personalised recommendations