Cell-Factor Interaction in Populations of Normal and Leukemic Blood Cells

  • Alan M. Wu
  • Francis W. Ruscetti
  • Robert C. Gallo


Functional mature cells of the hematopoietic sys­tem in adults are derived from proliferation and differentiation of their progenitor cells, the com­mitted stem cells (Fig. 1). By definition, the com­mitted stem cells derived from multipotent stem cells through differentiation and proliferation processes can give rise to only one type of dif­ferentiated cell. The stern cells should respond to a physiologic control for a normal function. This control is apparently mediated through some specific regulatory functions, i.e., transitions of precursor cells to differentiated cells require reg­ulatory factors. Some regulatory factors have a long-range effect on cellular differentiation, whereas others are closely associated with a specific environment and exert a short-range ef­fect (33). Because the normal function of the hematopoietic system is dependent on a continu­ous supply of mature cells, appropriate cell-factor interactions are critical for the maintenance of the normal function of blood cells. Derangement of this interaction will naturally impair the normal function of hemopoietic tissue. Leukemia may result from this de­rangement (12, 21, 34, 49).


Conditioned Medium Leukemic Cell Suspension Culture Colony Formation Growth Stimulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Austin, P. E., McCulloch, E. A., and Till, J. E. Characterization of the factor in L-cell conditioned medium capable of stimulating colony formation by mouse marrow cells in culture. J. Cell. Physiol., 77: 121, 1971.Google Scholar
  2. (2).
    Axelrad, A. A., McLeod, D. L., Shreeve, M. M., and Heath, D. S. Properties of cells that produce erythrocytic colonies in plasma culture. In Robinson W. A., ed., Proceedings of the Second International Workshop on Hemopoiesis in Culture, Airlie, Virginia, New York: Grune & Stratton, 1973.Google Scholar
  3. (3).
    Aye, M. T., Niho, Y., Till, J. E., and McCulloch, E. A. Studies of leukemic cell populations, in culture. Blood, 44: 205, 1974.PubMedGoogle Scholar
  4. (4).
    Aye, M. T., Till, J. E., and McCulloch, E. A. Growth of leukemic cells in culture. Blood, 40: 806, 1972.PubMedGoogle Scholar
  5. (5).
    Barr, R. D., Whang-Peng, J., and Perry, S. Hemopoietic stem cells in human peripheral blood. Science, 190: 284, 1975.PubMedCrossRefGoogle Scholar
  6. (6).
    Boyum, A., Boecker, W., Carsten, A. L., and Cronkite, E. P. Proliferation of human bone marrow cells in diffusion chambers implanted into normal or irradiated mice. Blood, 40: 163, 1972.PubMedGoogle Scholar
  7. (7).
    Bradley, T. R., and Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci., 44: 287, 1966.CrossRefGoogle Scholar
  8. (8).
    Bradley, T. R., Stanley, E. R., and Sumner, M. A. Factors from mouse tissues stimulating colony growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci., 49: 595, 1971.CrossRefGoogle Scholar
  9. (9).
    Bull, J. M., Duttera, M. J., Stashick, E. D., Northup, J., Henderson, E., and Carbone, P. P. Serial in vitro marrow culture in acute myelocytic leukemia. Blood, 42: 679, 1973.PubMedGoogle Scholar
  10. (10).
    Cerny, J. Stimulation of bone marrow haemopoietic stem cells by a factor from activated T-cells. Nature (London), 249: 63, 1974.CrossRefGoogle Scholar
  11. (11).
    Clarke, B. J., Axelrad, A. A., Shreeve, M. M., and McLeod, D. L. Erythroid colony induction without erythropoietin by Friend leukemia virus in vitro. Proc. Natl. Acad. Sci. USA, 72: 3556, 1975.CrossRefGoogle Scholar
  12. (12).
    Clarkson, B. Review of recent studies of cellular proliferation in acute leukemia. Natl. Cancer Inst. Monog. 30: 81, 1969.Google Scholar
  13. (13).
    Cline, M. J., and Golde, D. W. Production of colony-stimulating activity by human lymphocytes. Nature (London), 248: 703, 1974.CrossRefGoogle Scholar
  14. (14).
    Cooper, M. C., Levy, J., Cantor, L. N., Marks, P. A., and Rifkind, R. A. The effect of erythropoietin on colonial growth of erythroid precursor cells in vitro. Proc. Natl. Acad. Sci. USA, 71: 1677, 1974.CrossRefGoogle Scholar
  15. (15).
    Dexter, T. M., and Testa, N. G. Differentiation and proliferation of haemopoietic cells in culture. In Prescott, D. M., ed., Methods in Cell Biology, Vol. 14, New York; Academic Press, 1976.Google Scholar
  16. (16).
    Dicke, K. A., Spitzer, G., and Ahearn, M. J. Colony formation in vitro by leukaemic cells in acute myelogenous leukaemia with phytohaemagglutinin as stimulating factor. Nature (London) 259: 129, 1976.CrossRefGoogle Scholar
  17. (17).
    Fibach, E., Gerass, E., and Sachs, L. Induction of colony formation in vitro by human lymphocytes. Nature (London) 259: 127, 1976.CrossRefGoogle Scholar
  18. (18).
    Foster, R., Jr., and Metcalf, D. Bone marrow colony stimulating activity in human sera. Br. J. Haematol., 15: 147, 1968.PubMedCrossRefGoogle Scholar
  19. (19).
    Gallagher, R. E., and Gallo, R. C. Continuous production of complete type-C virus by exponentially-growing cultured leukocytes from one to sixteen patients with myelogenous leukemia. Proc. 2nd Int. Congr. Pathol. Physiol., Prague, Czechoslovakia.Google Scholar
  20. (20).
    Gallagher, R. E., Salahuddin, S. Z., Hall, W. T., McCredie, K. B., and Gallo, R. C. Growth and differentiation in culture of leukemic leukocytes from a patient with acute myelogenous leukemia and re-identification of type-C virus. Proc. Natl. Acad. Sci. USA, 72: 4137, 1975.PubMedCrossRefGoogle Scholar
  21. (21).
    Gallo, R. C. On the nature of the cellular defect in acute leukemia. Med. Clin. North Am., 57: 343, 1973.PubMedGoogle Scholar
  22. (22).
    Glass, J., Lavidor, L. M., and Robinson, S. H. Use of cell. separation and short-term culture techniques to study erythroid cell development. Blood, 46: 705, 1975.PubMedGoogle Scholar
  23. (23).
    Gordon, M. Y., Blackett, N.M., and Douglas, I. D. C. Colony formation by human haemopoietic precursor cells cultured in semi-solid agar in diffusion chambers. Br. J. Haematol., 31: 103, 1975.PubMedCrossRefGoogle Scholar
  24. (24).
    Gregory, C. J., McCulloch, E. A., and Till, J. E. Transient erythropoietic spleen colonies: Effects of erythropoietin in normal and genetically anemic w/wv mice. J. Cell. Physiol., 86: 1, 1975.PubMedCrossRefGoogle Scholar
  25. (25).
    Ichikawa, Y. Differentiation of a cell line of myeloid leukemia. J. Cell. Physiol., 74: 223, 1969.PubMedCrossRefGoogle Scholar
  26. (26).
    Iscove, N. N., Senn, J. S., Till, J. E., and McCulloch, E. A. Colony formation by normal and leukemic human marrow cells in culture: Effect of conditioned medium from human leukocytes. Blood, 37: 1, 1971.PubMedGoogle Scholar
  27. (27).
    Iscove, N. N., Sieber, F., and Winterhalter, K. H. Erythroid colony formation in cultures of mouse and human bone marrow: Analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agaroseconcanavalin A. J. Cell. Physiol., 83: 309, 1974.PubMedCrossRefGoogle Scholar
  28. (28).
    Jacobson, L. D., Goldwasser, E., and Gurney, C. W. Transfusion induced polycythemia as a model for studying factors influencing erythropoiesis. In Wolstenholme, G. E. W. and O’Connor, M., eds., Ciba Foundation Symposium on Haemopoiesis, p. 423. London: Churchill, 1960.Google Scholar
  29. (29).
    Lafleur, L., Underdown, B. J., Miller, R. G., and Phillips, R. A. Differentiation of lymphocytes: Characterization of early precursors of B lymphocytes. Ser. Haematol., 5: 50, 1972.PubMedGoogle Scholar
  30. (30).
    Landau, T., and Sachs, L. Characterization of the inducer required for the development of macrophage and granulocyte colonies. Proc. Natl. Acad. Sci. USA, 68: 2540, 1971.PubMedCrossRefGoogle Scholar
  31. (31).
    Levis, W. R., and Robbins, J. W. Methods for obtaining purified lymphocytes, glass-adherent mononuclear cells, and a population containing both cell types from human peripheral blood. Blood, 40: 77, 1972.PubMedGoogle Scholar
  32. (32).
    Lozzio, C. B., and Lozzio, B. B. Human chronic myelogeneous leukemia cell-line with positive Philadelphia chromosome. Blood, 45: 321, 1975.PubMedGoogle Scholar
  33. (33).
    McCulloch, E. A., Mak, T. W., Price, G. B., and Till, J. E. Organization and communication in populations of normal and leukemic hemopoietic cells. Biochim. Biophys. Acta, 335: 260, 1974.CrossRefGoogle Scholar
  34. (34).
    McCulloch, E. A., and Till, J. E. Regulatory mechanisms acting on hemopoietic stem cells. Some clinical implications. Amer. J. Pathol., 65: 601, 1971.Google Scholar
  35. (35).
    McLeod, D. L., Shreeve, M. M., and Axelrad, A. A. Induction of megakaryocyte colonies with platelet formation in vitro. Nature (London), 261: 492, 1976.CrossRefGoogle Scholar
  36. (36).
    Messner, H. A., Till, J. E., and McCulloch, E. A. Specificity of interacting populations affecting granulopoiesis in culture. Blood, 44: 671, 1974.PubMedGoogle Scholar
  37. (37).
    Metcalf, D., MacDonald, H. R., Odartchenko, N., and Sordat, B. Growth of mouse megakaryocyte colonies in vitro. Proc. Natl. Acad. Sci. USA, 72: 1744, 1975.CrossRefGoogle Scholar
  38. (38).
    Metcalf, D., Warner, N. L., Nossal, G. J. V., Miller, J. F. A. P., Shortman, K., and Rabellino, E. Growth of B lymphocyte colonies in vitro from mouse lymphoid organs. Nature (London), 255: 630, 1975.CrossRefGoogle Scholar
  39. (39).
    Morgan, D. A., Ruscetti, F. W., and Gallo, R. C. Selective in vitro growth of T-lymphocytes from normal human bone marrow. Science, 193: 1007, 1976.PubMedCrossRefGoogle Scholar
  40. (40).
    Nooter, K., and Ghio, R. Hormone-independent in vitro erythroid colony formation by bone marrow from Rauscher virus-infected mice. J. Natl. Cancer Inst., 55: 59, 1975.PubMedGoogle Scholar
  41. (41).
    Perry, S., and Gallo, R. C. Physiology of human leukemic leucocytes kinetics and biochemical consideration. In Gordon, A., ed., Regulation of Hemopoiesis, p. 1221. New York: AppletonCentury-Crofts, 1970.Google Scholar
  42. (42).
    Pluznik, D. H., and Sachs, L. The cloning of normal ‘mast’ cells in tissue culture. J. Cell. Comp. Physiol., 66: 319, 1965.CrossRefGoogle Scholar
  43. (43).
    Pope, J. H., Scott, W., and Moss, D. J. Human lymphoid cell transformation by Epstein-Barr virus. Nature [New Biol.], 246: 140, 1973.Google Scholar
  44. (44).
    Prival, J. T., Paran, M., Gallo, R. C., and Wu, A. M. Colony-stimulating factors in cultures of human peripheral blood cells. J. Natl. Cancer Inst., 53: 1583, 1974.PubMedGoogle Scholar
  45. (45).
    Robinson, W. A., and Pike, B. L. Colony growth of human bone marrow cells in vitro. In Stohlman, F., ed., Haemopoietic Cellular Proliferation, pp. 249–259. New York: Grune & Stratton, 1970.Google Scholar
  46. (46).
    Robinson, W. A., Stanley, E. R., and Metcalf, D. Stimulation of bone marrow colony growth in vitro by human urine. Blood, 33: 396, 1969.PubMedGoogle Scholar
  47. (47).
    Rozenszajn, L. A., Shoham, D., and Kalechman, I. Colonal proliferation of PHA-stimulated human lymphocytes in soft agar culture. Immunology, 29: 1041, 1975.PubMedGoogle Scholar
  48. (48).
    Ruscetti, F. W., and Chervenick, P. A. Release of colony-stimulating activity from thymus-derived lymphocytes. J. Clin. Invest., 55: 520, 1975.CrossRefGoogle Scholar
  49. (49).
    Sachs, L. Regulation of membrane changes, differentiation and malignancy in carcinogenesis. Harvey Lect., 68: 1, 1974.PubMedGoogle Scholar
  50. (50).
    Sheridan, J. W., and Stanley, E. R. Tissue sources of bone marrow colony stimulating factor. J. Cell. Physiol., 78: 451, 1971.PubMedCrossRefGoogle Scholar
  51. (51).
    Stephenson, J. R., Axelrad, A. A., McLeod, D. L., and Shreeve, M. M. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA, 68: 1542, 1971.CrossRefGoogle Scholar
  52. (52).
    Till, J. E., and McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res., 14: 213, 1961.PubMedCrossRefGoogle Scholar
  53. (53).
    Watson, J., and Prichard, J. Characterization of a factor required for the differentiation of myeloid and lymphoid cells in vitro. J. Immunol., 108: 1209, 1972.PubMedGoogle Scholar
  54. (54).
    Wood, W. G. Erythroid cell proliferation in human bone marrow suspension cultures. Br. J. Haemat., 26: 441, 1974.CrossRefGoogle Scholar
  55. (55).
    Wood, W. G. Haemoglobin synthesis in suspension cultures of human bone marrow. Br. J. Haemat., 26: 451, 1974.CrossRefGoogle Scholar
  56. (56).
    Wu, A. M., and Gallo, R. C. Biochemical basis of leukemia and lymphoma in man. In Hoffbrand, A. V., Brain, M. C., and Hirsch, J., eds., Recent Advances in Haematology Vol. 2. London: Churchill Livingstone, in press.Google Scholar
  57. (57).
    Wu, A. M., and Gallo, R. C. The phenotypic abnormality in leukemia: A defective cell-factor interaction? In Neth, R., Gallo, R. C., Mannweiler, K., and Moloney, W. C., eds. The Symposium on Modern Trends in Human Leukemia: II; pp. 51–62. Veriag, Munich: J. F. Lehmanns, 1976.Google Scholar
  58. (58).
    Yam, L. T., Li, C. Y., and Crosby, W. H. Cytochemical identification of monocytes and granulocytes. Am. J. Clin. Pathol., 55: 283, 1971.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Alan M. Wu
  • Francis W. Ruscetti
  • Robert C. Gallo

There are no affiliations available

Personalised recommendations