• B. Csillik


Structural correlates of acetylcholine effects are discussed in the terms of molecular anatomy. Polarization microscopy proves that acetylcholine induces a structural desorganisation of synaptic membranes, probably responsible for the increased ion flux during synaptic transmission. Synaptic vesicles within pre-synaptic terminals are not identical with the transmitter substance; rather they can be regarded as “containers” that bind acetylcholin on their surface membranes. The enzyme responsible for acetylcholine synthesis (acetylcholine acyltransferase choline acetylase) cannot be demonstrated at present by histological techniques. On the other hand, the enzyme hydrolyzing the transmitter (acetylcholinesterase) can readily be stained by means of the Koelle-technique, both at the level of light and electron microscopy. Presence of acetylcholinesterase in some excitatory and inhibitory synapses of the central nervous system suggests the “pretransmitter” role of acetylcholine. The fine structural localizations of specific and nonspecific esterases in the synaptolemmal layers of the motor end plate, as studied by means of electron histochemistry, proves that the “middle dense layer” contains arylesterase, whereas pre- and post-synaptic membranes are loaded with acetycholinesterase. Therefore, the theory of a cascade-connected enzyme system, responsible for junctional transmission, is forwarded.


Synaptic Vesicle AChE Activity Inhibitory Synapse Synaptic Membrane Osmic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, K. H.: Mikropinocytose im Zentralnervensystem. Zschr. Zellforsch. 64,63–73 (1964).PubMedCrossRefGoogle Scholar
  2. Beutner, R.,and T.C. Barnes: Science, 94,241 (1941). Cit. A. S. V. Burgen and F. C. Macintosh: The physiological significance of acetylcholine. In: Neuro-chemistry. K. A. C. Elliot, I. H. Page and J. H. Quastel,Eds. Thomas, Springfield 1955.Google Scholar
  3. Birks, P.., II. E. Huxley,and B. Katz: The fine structure of the neuromuscular junction of the frog. J. Physiol. (Lond.) 150,134–144 (1960).Google Scholar
  4. Burn, J. II.: Adrenergic transmission. Introductory remarks. Pharmacol. Rev., Baltimore, 18,459–470 (1966).Google Scholar
  5. Canepa, F. G., P. Pauling,and H. Sörum: Structure of acetylcholine and other substrates of cholinergic systems. Nature (Lond.), 210,907–909 (1966).CrossRefGoogle Scholar
  6. Coujard, R.: Essais sur la signification chimique de quelques méthodes histologiques (Réactions phénoliques, colorations nerveuses et mitochondriales). Bull. histol. appl. 20,161–173 (1943).Google Scholar
  7. Coujard, R.: Démonstration histochimique de la présence de choline au niveau de terminaisons nerveuses. C. R. Soc. Biol. Paris, 142,16–17 (1948).PubMedGoogle Scholar
  8. Couteaux, R.: Contribution à l’étude de la synapse myoneurale. Rev. canad. biol. 6, 563–711 (1947).Google Scholar
  9. Couteaux, R.: Morphological and cytochemical observations on the post-synaptic membrane at motor end-plates and ganglionic synapses. Exp. Cell Research. Suppl. 5, 293–322 (1958).Google Scholar
  10. Csillik, B.: Submicroscopic organization of the post-synaptic membrane in the rnyoneural junction. J. Cell Biol. 17,571–586 (1963).PubMedCrossRefGoogle Scholar
  11. Csillik, B., F. Joó, P. Kdsa,and G. Sdvay: Pb Thiocholine techniques for the electron histochemical localization of acetylcholinesterase. Acta Histochem. 25, 58–70 (1966).-Google Scholar
  12. Curtis, D. R.: The actions of amino acids upon mammalian neurons. Studies n Physiology, Springer, Berlin, pp. 34–42 (1965).Google Scholar
  13. Dale, H. H.: The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exper. Therap., Baltimore, 6, 147–190 (1914).Google Scholar
  14. Del Castillo, J.,and B. Katz: On the localization of acetylcholine receptors. T. Physiol., Lond. 128,157–181 (1955).Google Scholar
  15. Del Castillo, J.,and B. Katz: Biophysical aspects of neuromuscular transmission. In: J. A. V. Butler,ed. Progr. in Biophys. Biophysic.-Chem. 6,122–170 (1956).Google Scholar
  16. De Robertis, E. D. P.,and H. S. Bennett: Some features of the submicroscopic morphology of synapses in frog and earthworm. J. biophys. biochem. Cytol. 1,47–58 (1955).Google Scholar
  17. De Robertis, E., C. R. Lores Arnaiz, L. Salganicoff, A. P. De Iraldi,and L. M. Zieher: Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve endings. J. Neurochem. 10 225–235 (1963).Google Scholar
  18. Dixon, W. E.: Vagus inhibition. Brit. Med. J. 2, 1807 (1907).Google Scholar
  19. Eccles, J. C.: The physiology of synapses. Springer, Berlin-Göttingen-Heidelberg 1964.Google Scholar
  20. Fatt, P.,and B. Katz: Spontaneous subthreshold activity at motor nerve endings. J. Physiol., London, 117,109–128 (1952).Google Scholar
  21. Feldberg, W. A., A. Fessard.,and D. Nachmansohn: The cholinergie nature of the nervous supply to the electrical organ of the Torpedo (Torpedo marmo-rata). J. Physiol., London, 97, 3–5 (1940).Google Scholar
  22. Fernandez-Moran, H.: Electron microscopy of nervous tissue. In: D. Richter,Ed., Metabolism of the nervous system. 1–34. Pergamon Press, London 1957.Google Scholar
  23. Fernandez-Moran, H.: Cell membrane ultrastructure: low temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems. In: Ultrastructure and metabolism of the nervous system. S. R. Korey, A. Pope, E. Robins,Eds. pp. 235–267. Williams and Wilkins, Baltimore 1962.Google Scholar
  24. Gerebtzoff, M. A.: Cholinesterases: A histochemical contribution to the solution of some functional problems. Pergamon Press, Oxford 1959.Google Scholar
  25. Hdmori, J.,and J. Szentdgothai: The Purkinje cell baskets: ultrastructure of an inhibitory synapse. Acta biol., Szeged, 15,465–479 (1965).Google Scholar
  26. Hebb, O. C., G. M. Ling, E. G. McGeer, P. L. McGeer,and D. Perkins: Effect of locally applied hemicholinium on the acetylcholine content of the caudate nucleus. Nature, London, 204,1309–1311 (1964).Google Scholar
  27. Hechter, O.: Intracellular water structure and mechanisms of cellular transport. Annal N. Y. Acad. Sci. 125,625–646 (1965).Google Scholar
  28. Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. Biol. Chem., Baltimore, 180,249–261 (1949).Google Scholar
  29. Hunt,R., and R. M. Taveau: Brit. Med. Journal 2,1788 (1906). Cit.: J. H. Quastel: Acetylcholine synthesis in the central nervous system. In: Neurochemistry. K. A. C. Elliot, I. H. Page and J. H. Quastel,Eds. Thomas, Springfield, pp. 153–172 (1955).Google Scholar
  30. Hyono, A.,and S. Kuriyama: Properties and structures of lecithin mono-layers containing potassium ions or acetylcholine. Nature, London, 210,300–301, (1966).Google Scholar
  31. Kâsa, P.,and B. Csillik: Cholinergic excitation and inhibition in the cerebellar cortex. Nature, London, 208,695 (1965).Google Scholar
  32. K¢sa, P.,and B. Csillik: Electron microscopic localization of cholinesterase by a copper-lead thiocholine technique. J. Neurochemistry 13,1345–1349 (1966).Google Scholar
  33. Knyihdr, E.,and B. Csillik: Ultrastructural basis of excitation and inhibition in mammalian autonomic ganglia. Acta biol. Hung. 19, 227–238 (1968).Google Scholar
  34. Koelle, G. B.: The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases and their localizations in the tissues of the cat. J. Pharmacol. Exper. Therap., Baltimore, 103,153–171 (1951).Google Scholar
  35. Koelle, G. B.: The histochemical localization of cholinesterases in the central nervous system of the rat. J. Comp. Neurol., Philadelphia, 100,211–228 (1954).Google Scholar
  36. Koelle, G. B.: A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterase. J. Pharm. Pharmacol. 14,65–90 (1962).Google Scholar
  37. Koelle, G. B.: Cytological distribution and physiological functions of cholinesterases. Hdb. der experimentellen Pharmakologie. Ergänzungswerk. Vol. 15, 187–298. Springer, Berlin 1963.Google Scholar
  38. Koelle, G. B.,and J. S. Friedenwald: The histochemical localization of cholinesterase in ocular tissue. Amer. J. Ophth. 33, 253–256 (1950).Google Scholar
  39. Krnjevic, K.,and J. F. Mitchell: Unpublished experiments. Cited by Hebb,C., in Hdb. d. exp. Pharmakologie, Ergänzungswerk, Vol. 15, p. 80. Springer, Berlin 1963.Google Scholar
  40. Lehrer, G. M.,and L. Ornstein:A diazo coupling method for the electron microscopic localization of cholinesterase. J. biophys. biochem. Cytol. 6, 399 to 406 (1959).Google Scholar
  41. Loewi, O.: Über humorale Ubertragbarkeit der Herznervenwirkung. Pflügers Arch. Physiol., Bonn, 189, 239–242 (1921).Google Scholar
  42. McIntosh, F. C.: Synthesis and storage of acetylcholine in nervous system. Canad. J. Biochem. Physiol. 41,2555–2571 (1963).Google Scholar
  43. Metz, B.: Correlation between respiratory reflex and acetylcholine content of puns and medulla. Amer. J. Physiol. 202,80–82 (1962).Google Scholar
  44. Nachmansohn, D.: Die Rolle des Acetylcholins in den Elementarvorgängen der Nervenlcitung. Brg. Physiol. 48,575–683 (1955).Google Scholar
  45. Nachmansohn, D.: Actions on axons, and evidence for the role of acetyIcholine in axonal conduction. In: Cholinesterases and anti-cholinesterase agents. G. B. Koelle,Subeditor, pp. 701–740. Springer, Berlin-Göttingen-Heidelberg 1963.Google Scholar
  46. Palade, G. E.,and S. L. Palay: Electron microscope observations of inter-neuronal and neuromuscular synapses. Anat. Rec. 118,335 (1954).Google Scholar
  47. Palay, S. L.,and G. E. Palade: The fine structure of neurons. J. biophys. biochem. Cytol. 1,69–88 (1955).Google Scholar
  48. Quastel, D. M. J.,and D. R. Curtis: A central action of hemicholinium. Nature, London, 208,192–194 (1965).Google Scholar
  49. Ranvier,L.: Leçons sur l’Histologie du système nerveux. Librairie F. Savy, Paris 1878.Google Scholar
  50. Riker, W. F.: Actions of acetylcholine on mammalian motor nerve terminal. J. Pharmacol. Exp. Therap. 152,397–416 (1966).Google Scholar
  51. Robertson, J. D.: The molecular structure and contact relationships of cell membranes. Progress in Biophysics, 10,343–418 (1960).Google Scholar
  52. Rogers, A. W.,Z. Darzynkiewicz, E. A. Barnard,and M. M. Salpeter: Number and location of acetylcholinesterase molecules at motor end plates of the mouse. Nature, London, 210,1003–1006 (1966).Google Scholar
  53. Sâvay, G.,and B. Csillik: Lead-reactive substances in myoneural synapses. Nature, London, 181,11–37 (1958).CrossRefGoogle Scholar
  54. Tauc,L., and H. M. Gerschenfeld: Cholinergic transmission mechanisms for both excitation and inhibition in molluscan central synapses. Nature, London, 192,366–367 (1961).Google Scholar
  55. Tauc,L., and H. M. Gerschenfeld: A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system. J. Neurophysiol., Springfield, 25,236–262 (1962).Google Scholar
  56. Taxi, J.: Contribution à l’étude des connexions des neurones moteurs du système nerveux autonome. Ann. Sci. Naturelles, Zool. 7, 413–674 (1965).Google Scholar
  57. Whittaker, V. P.,and E. G. Gray: The synapse: biology and morphology. Brit. Med. Bull. 18,223–228 (1962).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1969

Authors and Affiliations

  • B. Csillik
    • 1
  1. 1.Department of AnatomyUniversity Medical SchoolSzegedHungary

Personalised recommendations