Skip to main content

The Mammalian Pineal Organ

  • Chapter

Summary

This survey is based on selected data from the large literature as well as on own observations and discusses aspects of pineal phylogenetic and ontogenetic development, the fine structure of the mammalian pineal, its biochemistry and physiology. The author has been trying to integrate data, to stress the structural, biochemical and functional specificity of the organ, and to point to problems which should be further investigated. He has not been shy of one or two, perhaps fruitful, speculations.

The phylogenetic development of the organ supports the opinion that the mammalian pinealocyte is a non-nervous element derived from the neurosensory photoreceptor cell present in the submammalian pineal organ. In Sauropsida the photosensory function of the epiphysis is gradually lost while its secretory function develops. This functional change, already foreshadowed in anuran amphibians, is accompanied by a change in pineal innervation. The sensory pineal tract disappears and the organ becomes innervated by peripheral autonomic fibers. Primarily, these fibers reach the pineal exclusively along the pineal vessels, running in the perivascular spaces. Secondarily, an additional contribution of sympathetic fibers is realized by way of the nervi eonarii. The latter fibers penetrate directly into the pineal parenchyma their endings making simple appositional as well as specific synaptic contacts with the pinealocytes. In this paper, such synaptic contacts are demonstrated in the rat pineal.

By way of a working hypothesis the mode of innervation of the pineal organ of mammals is compared with that of smooth musculature. Stimulation of pinealocytes is thought to occur by (1) diffusion of neurotransmitter released from the varicosities and endings of sympathetic fibers present in the perivascular spaces, (2) simple appositional contact of sympathetic nerve terminals with pinealocytes in the parenchyma, (3) specialized synaptic contact between sympathetic nerve terminals and pinealocytes in the parenchyma, and, speculatively, (4) by transmission of impulses from one pinealocyte to another which can either be (a) of a neurohumoral or (b) of an electrotonic nature. Probably, (1) is the phylogenetic earliest mode of stimulation.

The topographical relationship between the terminal buds of the processes of pinealocytes and the perivascular space varies in mammals. Although the secretory function of the pinealocyte can scarcely be doubted, the problem of the production, storage and extrusion of secretory products is not quite solved at the ultra-structural level. The compound(s) produced by the pinealocytes most probably reach the blood via the perivascular spaces, a condition which is compared with the release of compounds produced by neurons and neurosecretory cells into the blood via pericapillary spaces in the region of the median eminence and in the neural part of the hypophysis.

In the chapter on pineal biochemistry the presence of catecholamines, indole-amines, lipids, proteins and some enzymes is discussed as is the influence of pineal denervation and of light and darkness on the pineal content of some of them. The neural pathway for the transmission of photic stimuli from the retina of the lateral eyes to the epiphysis is also mentioned. In the pineal some compounds are synthetized which are exclusively produced in this organ.

In the chapter on pineal physiology reference is made to experimental research pointing to the effects of light and darkness, of pinealectomy and of administration of pineal extracts on the size, weight and function of the reproductive organs. It appears that the pineal exerts an inhibiting influence on these organs. A tentative explanation is given of the functional significance of the intact pineal innervation by sympathetic fibers. It is assumed that light and darkness, via this innervation, condition the basically internal regulated function of the organ. External stimuli, such as photic, act in a regulation mechanism which is superimposed on an intrinsic pineal regulation mechanism which is probably of a hormonal nature. Experimentally produced changes in pineal function are, after some time, no longer of any effect on the normal function of the reproductive system. It would seem that the pineal organ is not indispensable for the normal function of this system as appears, on the long run, after pinealectomy.

Regarding the nature of the pineal compound(s) inhibiting the reproductive system different opinions exist. They would be either indole derivatives such as melatonin and 5-methoxytryptophol, or peptides. The finding that by one peptide fraction of a pineal extract hypophyseal FSH secretion in vitro is increased whereas by another peptide fraction this secretion is decreased has now proven beyond doubt that (1) the pineal produces an antigonadotropic as well as a gonadotropic principle, (2) these principles act on the gonadotropic cells of the distal part of the hypophysis rather than at the level of the organs of reproduction. Other arguments are also in favor of the opinion that the direct target organ of the pineal compound(s) is the hypophysis. That this pinealo-hypophyseal action may be additionally regulated by hypothalamic centers is suggested by changes in activity of these centers after administration of pineal extracts. It also appears that, most probably, the distal part of the hypophysis rather than the gonads regulates the production of the pineal antigonadotropic principle.

In conclusion it can be stated that the mammalian pineal is a photo-neuroendocrine organ (E. Scharrer) on the understanding that the structure is a neuro-epithelial derivative, that the endocrine function is exerted by non-nervous but specific pineal cells, the pinealocytes, which are phylogenetically derived from neurosensory photoreceptor cells, and that the mammalian pineal is an indirect photosensory organ, photic stimuli reaching it via a neural pathway starting in the retina and ending in the organ by way of its sympathetic innervation. The mammalian pineal functions as a “regulator of regulators” and is not absolutely indispensable for the normal function of the organism.

The facts now known about this intriguing organ should stimulate further research to solve the many problems so far still unsolved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, E.: The anatomy of bovine and ovine pineals. Light and electron microscopic studies. J. Ultrastruc. Res., Suppl. 8, 1–80 (1965).

    Google Scholar 

  • Aron, E., C. Combescot, J. Demaret, L. Guyon,et R. Y. Mauvernay: Modifications de la neurosécrétion observées dans l’encéphale du rat après injection d’un extrait épiphysaire. C. R. Soc. Biol., Paris, 155, 593–595 (1961).

    Google Scholar 

  • Arstila, A. U.: Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Suppl. Neuroendocrinol. 2, 1–101 (1967).

    Google Scholar 

  • Arstila, A. U.,and V. K. Hopsu: Studies on the rat pineal gland. I. Ultra-structure. Ann. Acad. Sc. Fenn., Ser. A, V. 113,1–21 (1964).

    CAS  Google Scholar 

  • Arvy,L.: La glande pinéale, centre régulateur des amines biogènes. Ann. Biol., Paris, 5, 565–594 (1966).

    Google Scholar 

  • Axelrod, J., R. J. Wurtman,and S. H. Snyder: Control of hydroxyindole Omethyltransferase activity in the rat pineal gland by environmental lighting. J. Biol. Chem. 240,949–954 (1965).

    PubMed  CAS  Google Scholar 

  • Barer, R.: The ultrastructure of small blood vessels of the posterior pituitary gland in relation to neurosecretion. 3rd Europ. Conf. Microcirc., Jerusalem 1964. In: Bibl. anat. 7, 304–309. Basel-New York: Karger, 1965.

    Google Scholar 

  • Borgmann, W.: Die Epiphysis cerebri. In: Handbuch der mikroskopischen Anatomie des Menschen. W. von Möllendorff, ed. Bd. VI/4, 309–502. Berlin: Springer, 1943.

    Google Scholar 

  • Barry, J.: Rapports et structure des capillaires du plexus porte primaire de l’hypophyse. Pathologie-Biologie 13, 866–886 (1965).

    CAS  Google Scholar 

  • Bayerova, G.,und A. Bayer: Beitrag zur Fermenthistochemie der menschlichen Epiphyse. Acta Histochem. 28, 169–173 (1967).

    PubMed  CAS  Google Scholar 

  • Bertler, A., B. Falck,and Chr. Owman: Cellular localization of 5-hydroxytryptamine in the rat pineal gland. K. fysiogr. Sällsk. Lund Förh. 33, 13–16 (1963).

    Google Scholar 

  • Bertler, A., B. Falck,and Chr. Owman: Studies on 5-hydroxytryptamine stores in pineal gland of rat. Acta Physiol. Scand. 63, Suppl. 239, 1–18 (1964).

    Google Scholar 

  • Bondareff, W.: Electron microscopic study of the pineal body in aged rats. J. Geront. 20,321–327 (1965 a).

    Google Scholar 

  • Bondareff, W.: Submicroscopic morphology of granular vesicles in syrup thetic nerves of rat pineal body. Z. Zellforsch. 67, 211–218 (1965 b).

    Google Scholar 

  • Bondareff, W.,and B Gordon: Submicroscopic localization of norepinephrine in sympathetic nerves of the rat pineal. J. Pharmacol. exp. Therap. 153,42–47 (1966).

    CAS  Google Scholar 

  • Borell, U.,and A. Örström: Metabolism in different parts of the brain, especially in the epiphysis, measured with radioactive phosphorus. Acta Physiol. Scand. 10,231–242 (1945).

    Article  CAS  Google Scholar 

  • Bostelmann, W.: Beitrag zur Kenntnis der Epiphysis cerebri unter Berücksichtigung ihrer Zytochemie. Wiss. Z. Univ. Rostock 12, 437–453 (1963).

    Google Scholar 

  • Burnstock, G.: The autonomic muscular junction. In: Proc. of the XXIV International Congress of Physiological Sciences, Washington, 3, 7–8 (1968).

    Google Scholar 

  • Chu, E. W., R. J. Wurtman,and J. Axelrod: An inhibitory effect of melatonin on the estrous phase of the estrous cycle in the rodent. Endocrinology 75, 238–242 (1964).

    Google Scholar 

  • Clementi, F., G. de Virgiliis, F. Fraschini,and B. Mess: Modifications of pituitary morphology following pinealectomy and the implantation of the pineal body in different areas of the brain. In: Proceedings of the Sixth International Congress for Electron Microscopy, Kyoto, 1966, 539–540. Tokyo: Maruzen Co., 1966.

    Google Scholar 

  • Collin, J. P.,and J. Ariens Koppers: Electron microscopic study of pineal innervation in lacertilians. Brain Research 11,85–106 (1968).

    Article  Google Scholar 

  • Czyba, J. C.,C. Girod et N. Durand: Sur l’antagonisme épiphyso-hypophysaire et les variations saisonnières de la spermatogenèse chez le Hamster doré (Mesocricetus auratus). C. R. Soc. Biol., Paris, 158, 742 (1964).

    Google Scholar 

  • Czyba, J. C., C. Girod, M. Curé et N. Durand: Sur les corrélations épiphysotesticulaires chez le Hamster doré (Mesocricetus auratus Waterh.). Bull. Assoc. Anatom., 50e Réun., Lausanne, 324–333 (1965).

    Google Scholar 

  • Delvigs, P., W. M. Mclsaac,and R. G. Taborsky: The metabolism of 5-methoxytryptophol. J. Biol. Chem. 240,348–350 (1965).

    Google Scholar 

  • De Robertis, E.: Histophysiology of Synapses and Neurosecretion. Oxford: Pergamon, 1964.

    Google Scholar 

  • De Robertis, E.,and A. Pellegrino de Iraldi: Plurivesicular secretory processes and nerve endings in the pineal gland of the rat. J. Biophys. Biochem. Cytol. 10,361–372 (1961).

    Article  Google Scholar 

  • Duncan, D.,and G. Micheletti: Notes on the fine structure of the pineal organ of cats. Tex. Rep. Biol. Med. 24,576–587 (1966).

    Google Scholar 

  • Ebels,I.: Étude chimique des extraits épiphysaires fractionnés. Biol. Méd. 56, 395–402 (1967).

    CAS  Google Scholar 

  • Ebels, I.,and N. Prop: A study of the effect of melatonin on the gonads, the oestrous cycle and the pineal organ of the rat. Acta Endocrinol. 49,567–577 (1965).

    PubMed  CAS  Google Scholar 

  • Ebels, I., A. Moszkowska et A. Scemama: Étude in vitro des extraits épiphysaires fractionnés. Résultats préliminaires. C. R. Acad. Sci., Paris, 260,5126–5129 (1965 a).

    Google Scholar 

  • Ebels, I., D. V. G. Versteeg,and J. F. G. Vliegenthart: An attempt to isolate arginine vasotocin from sheep and bovine pineal body. Proc. Kon. Ned. Akad. Wet., Amsterdam, Ser. B, 68, 1–4 (1965 b).

    Google Scholar 

  • Falck, B., Chr. Owman,and E. Rosengren: Changes in rat pineal stores of 5hydroxytryptamine after inhibition of its synthesis or break-down. Acta Physiol. Scand. 67, 300–305 (1966).

    Google Scholar 

  • Fiske, V. M.: Effect of light on sexual maturation, estrous cycles and anterior pituitary of the rat. Endocrinology 29,187–196 (1941).

    Article  Google Scholar 

  • Fiske, V. M.: Serotonin rhythm in the pineal organ: control by the sympathetic nervous system. Science 146, 253–254 (1964).

    Google Scholar 

  • Fiske, V. M., G. K. Bryant,and J. Putnam: Effect of light on the weight of the pineal in the rat. Endocrinology 66, 489–491 (1960).

    Google Scholar 

  • Fiske, V. M., J. Pound,and J. Putnam: Effect of light on the pineal organ in hypophysectomized, gonadectomized, adrenalectomized or thiouracil-fed rat. Endocrinology 71,130–133 (1962).

    Google Scholar 

  • Ford, D. H.: Uptake of ‘t31-I-labelled triiodothyronine in the pineal body as compared with the cerebral grey and other tissues of the rat. Progr. Brain Res. 10,530–539 (1965).

    Article  CAS  Google Scholar 

  • Frauchiger, E.: Altes und Neueres über die Zirbeldrüse (Epiphysis cerebri). Schweiz. Arch. Tierheilk. 105,183–194 (1963).

    Google Scholar 

  • Frauchiger, E.,und K. Sellei: Dünnschichtchromatographie der Lipoide in der Glandula pinealis. Schweiz. Arch. Neurol. Neurochir. Psych. 98, 240–243 (1966).

    CAS  Google Scholar 

  • Giarman, N. J.,and M. Day: Presence of biogenic amines in the bovine pineal body. Biochem. Pharmacol. 1,235 (1958).

    Google Scholar 

  • Giarman, N. J., D. X. Freedman,and L. Picard-Ami: Serotonin content of the pineal glands of man and monkey. Nature, Lond., 186, 480–481 (1960).

    Google Scholar 

  • Girod,C., J. C. Czyba et N. Durand: Influence de l’épiphysectomie sur les cellules gonadotropes antéhypophysaires du Hamster doré (Mesocricetus auratus Waterh.). C. R. Soc. Biol. Paris 158,1636 (1964).

    Google Scholar 

  • Gusek,W.: Neue Befunde zur Morphologie und Funktion der Epiphysis cerebri. Ergebn. allg. Path. path. Anat. 50,104–148 (1968).

    Google Scholar 

  • Gusek,W., und H. Buss: Morphologische und histochemische Veränderungen der Zirbeldrüse unter dem Einfluß von Prolan und nach Ovarektomie. Frankf. Z. Pathol. 75, 172–186 (1966).

    Google Scholar 

  • Gusek,W., und A. Santoro: Elektronoptische Beobachtungen zur Ultramorphologie der Pinealzellen bei der Ratte. Arch. int. Biol. norm. e pat. 13,451–464 (1960).

    Google Scholar 

  • Gusek, W., H. Buss und H. Wartenberg: Weitere Untersuchungen zur Feinstruktur der Epiphysis cerebri normaler und vorbehandelter Ratten. Progr. Brain Res. 10,317–330 (1965).

    Google Scholar 

  • Htakanson,R., and Chr. Owman: Effect of denervation and enzyme inhibition on DOPA decarboxylase and monoamine oxidase activities of rat pineal gland. J. Neurochem. 12,417–429 (1965).

    Google Scholar 

  • Halaris, A., E. Rüther,and N. Matussek: Effect of benzoquinolizine (RO 41284) on granulated vesicles of the rat brain. Z. Zellforsch. 76, 100–107 (1967).

    Google Scholar 

  • Hassler, R.,and I. J. Bak: Effects of amine-depleting and amine-storing substances on the axon terminals of the pineal gland. In: 5th int. Congr. Electron Microscopy, Kyoto, 1966, 521–522. Tokyo: Maruzen Co., 1966.

    Google Scholar 

  • Hoffman, R. A., and R. J. Reiter: Pineal gland: influence on gonads of male hamsters. Science 148,1609–1611 (1965 a).

    Google Scholar 

  • Hoffman, R. A., and R. J. Reiter: Influence of compensatory mechanisms and the pineal gland on dark-induced gonadal atrophy in male hamsters. Nature, Lond., 207,685–659 (1965 b).

    Google Scholar 

  • Hoffman, R. A., and R. J. Reiter: Responses of some endocrine organs of female hamsters to pinealectomy and light. Life Sci. 5, 1147–1151 (1966).

    Google Scholar 

  • Hoffman, R. A., R. J. Hester,and C. Towns: Effect of light and temperature on the endocrine system of the golden hamster (Mesocricetus auratus Waterh.). Comp. Biochem. Physiol. 15,525–533 (1965).

    Google Scholar 

  • Hopsu, V. K.,and A. U. Arstila: An apparent somato-somatic synaptic structure in the pineal gland of the rat. Exp. Cell Res. 37, 484–487 (1964).

    Google Scholar 

  • Jöchle, W.: Über die Wirkung eines Epiphysenextractes (Glanepin) auf Sexualentwicklung und Sexualcyclus junger weiblicher Ratten unter normalen Haltungsbedingungen und bei Dauerbeleuchtung. Endokrinologie, Leipzig, 33, 287–295 (1956).

    Google Scholar 

  • Jouan, P.,et J.-C. Rocaboy: Etude de l’activité peptidasique de la glande pinéale du porc. C. R. Soc. Biol., Paris, 160,859 (1966).

    Google Scholar 

  • Jouan, P., T. Viem Dai et M. Cormier: Sur la nature des phospholipides de la glande pinéale (épiphyse) du porc. Bull. Soc. Chim. biol., Paris, 46, 1121–1129 (1964).

    Google Scholar 

  • Kappers, J. Ariëns: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch. 52,163–215 (1960).

    Google Scholar 

  • Kappers, J. Ariëns: Melatonin, a pineal compound. Preliminary investigations on its function in the rat. Gen. Comp. Endocrinol. 2,610–611 (1962).

    Google Scholar 

  • Kappers, J. Ariëns: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Progr. Brain Res. 10,87–153 (1965).

    Google Scholar 

  • Kappers, J. Ariëns: The sensory innervation of the pineal organ in the lizard, Lacerta viridis,with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z. Zellforsch. 81,581–618 (1967).

    Google Scholar 

  • Kappers, J. Ariëns: Morphological and functional evolution of the pineal organ. In: Proc. of the Third Internat. Congr. of Endocrinology, Mexico, 1969. In press.

    Google Scholar 

  • Kappers, J. Ariëns, N. Prop,and J. Zweens: Qualitative evaluation of pineal fats in the albino rat by histochemical methods and paper chromatography and the changes in pineal fat contents under physiological and experimental conditions. Progr. Brain Res. 5,191–199 (1964).

    Google Scholar 

  • Kenny, G. C. T.: The “nervus conarii” of the monkey. (An experimental study.) J. Neuropath. exp. Neurol. 20,563–570 (1961).

    Google Scholar 

  • Kitey, J. I.: Effects of pinealectomy on ovary weight in immature rats. Endocrinology 54,114–116 (1954).

    Google Scholar 

  • Kitay, J. I.,and M. D. Altschule: The pineal gland. Commonwealth Fund Book, Cambridge, Mass., Harvard Univ. Press, 1954.

    Google Scholar 

  • Knowles, F.,and L. Vollrath: Neurosecretory innervation of the pituitary of the eels Anguilla and Conger. I. The structure and ultrastructure of the neuro-intermediate lobe under normal and experimental conditions. II. The structure and innervation of the pars distalis at different stages of the life-cycle. Phil. Trans. Roy. Soc., Lond., Ser. B, 250,311–342 (1966).

    Google Scholar 

  • Krass, M. E.,and F. S. Labella: Biochemical evidence for a secretory role of the pineal body. Oxidation of 1-15C- and 6-“C-glucose in vitro by pineal body, pituitary, and brain from young and adult animals. J. Neurochem. 13, 1157–1162 (1966).

    Google Scholar 

  • Krass, M. E.,and F. S. Labella: Hexosemonophosphate shunt in endocrine tissues. Quantitative estimation of the pathway in bovine pineal body, anterior pituitary, posterior pituitary, and brain. Biochim. Biophys. Acta 148,384–391 (1967).

    Google Scholar 

  • Kurosomi, K.,and I. Kawabata: Electron microscopic studies of the fine structure of pineal glands in normal and experimental rats. In Proc. 6th International Congress for Electron Microscopy, Kyoto, 1966. 519–520. Tokyo: Maruzen Co., 1966.

    Google Scholar 

  • Leonhardt, H.: Über axonähnliche Fortsätze, Sekretbildung und Extrusion der hellen Pinealozyten des Kaninchens. Z. Zellforsch. 82,307–320 (1967).

    Google Scholar 

  • Lever, J. D.: Fine structural organization in endocrine tissues. Brit. Med. Bull. 18,229–232 (1962).

    Google Scholar 

  • Machado,A. B. M.: Ultrastructure of the pineal body of the newborn rat. Anat. Rec. 154,381 (1966).

    Google Scholar 

  • Machado, A. B. M., L. C. M. Faleiro,and W. Dias da Silva: Study of mast cell and histamine contents of the pineal body. Z. Zellforsch. 65, 521–529 (1965).

    Google Scholar 

  • Martini, L., L. Mira, A. Pecile,and S. Saito: Neurohypophyseal hormones and gonadotrophins release. Acta Endocrinol., Suppl. 38, 81–82 (1958).

    Google Scholar 

  • Mclsaac, W. M., R. G. Taborsky,and G. Farrell: 5-Methoxytryptophol: effect on estrus and ovarian weight. Science 145,63–64 (1964).

    Google Scholar 

  • Meyburg, P.: Zur Frage der Herkunft der Parenchymzellen des Pinealorganes. Schweiz. Arch. Neurol. Neurochir. Psych. 95, 245–270 (1965).

    Google Scholar 

  • Milcou,S. M., and S. Pavel: Antigonadotropic function of the pineal gland and the oxytocin of the neurosecretory hypothalamic system. Nature, Lond., 187,950951 (1961).

    Google Scholar 

  • Milcou,S. M.,and I. Petrea: Electron microscopic studies on the secretory cytodynamics of the pineal gland. Epiphysis-hypophysis-gonadic correlations. Rev. Roum. Endocrinol. 1,109–114 (1964 a).

    Google Scholar 

  • Milcou,S. M., and I. Petrea: Some aspects of the endocrinosecretory cytodynamic in the pineal gland at the electron microscope. In: Proc. 3rd Europ. Reg. Conf. on Electron Microscopy. Czechoslovak Acad. Sci., Prague, 1964 b, 481–482.

    Google Scholar 

  • Milcou,S. M., and I. Petrea: Cytology of the pineal gland. In: Proc. Congr. Nat. Endocrinologie, Bucharest, 1967, 177–185.

    Google Scholar 

  • Milcou,S. M., S. Pavel,and C. Neacsu: Biological and chromatographic characterization of a polypeptide with pressor and oxytocic activities isolated from bovine pineal gland. Endocrinology 72,563–566 (1963).

    Google Scholar 

  • Miline, R., P. Stern et S. Hukovic: Sur la présence de la sérotonine dans la glande pinéale. Bull. Sci. 4, 75 (1959).

    Google Scholar 

  • Miline, R.: La part de l’épiphyse dans le syndrome d’adaptation. In: Congrès National des Sciences Médicales, Bucarest, 5–11 Mai 1957, 421–444. Edition de l’Académie de la République populaire roumaine, 1957.

    Google Scholar 

  • Miline,R.: La part du noyau paraventriculaire dans l’histophysiologie corrélative de la glande thyroïde et de la glande pinéale. Ann. Endocr., Paris, 24,255269 (1963).

    Google Scholar 

  • Milafsky, A. H.: The fine structure of the pineal in the rat, with special reference to parenchyma. Anat. Rec. 127,435–436 (1957).

    Google Scholar 

  • Moore, R. Y.,A. Heller, R. K. Bhatnager, R. J. Wurtman,and J. Axelrod: Central control of the pineal gland: visual pathways. Arch. Neurol. 18, 208–218 (1968).

    Google Scholar 

  • Moszkowska,A.: L’antagonisme épiphyso-hypophysaire. Ann. Endocrinol., Paris, 24, 215–226.

    Google Scholar 

  • Moszkowska,A.: Contribution à l’étude du mécanisme de l’antagonisme épiphyso-hypophysaire. Progr. Brain Res. 10,564–575 (1965).

    Google Scholar 

  • Moszkowska,A.: Étude des extraits épiphysaires fractionnés — Physiologie. Biol. Méd. 56, 403–412 (1967).

    Google Scholar 

  • Moszkowska,A., and I. Ebels: A study of the antigonadotrophic action of synthetic arginine vasotocin. Experientia 24, 610–611 (1968).

    Google Scholar 

  • Moszkowska,A., I. Ebels et A. Scemama: Étude in vitro des extraits fractionnés d’épiphyses d’agneau. C. R. Soc. Biol., Paris, 159, 2298 (1965).

    Google Scholar 

  • Niemi,M., and M. Ikonen: Histochemical evidence of amino peptidase activity in rat pineal gland. Nature, Lond., 185,928 (1960).

    Google Scholar 

  • Owman, Chr.: Sympathetic nerves probably storing two types of monoamines in the rat pineal gland. Int. J. Neuropharmacol. 2, 105–112 (1964 a).

    Google Scholar 

  • Owman, Chr.: New aspects of the mammalian pineal gland. Acta Physiol. Scand. 63, Suppl. 240, 1–40 (1964 b).

    Google Scholar 

  • Owman, Chr.: Localization of neuronal and parenchymal monoamines under normal and experimental conditions in the mammalian pineal gland. Progr. Brain Res. 10,423–453 (1965).

    Google Scholar 

  • Pavel, S.: Evidence for the presence of lysine vasotocin in the pig pineal gland. Endocrinology 77, 812–817 (1965).

    Google Scholar 

  • Pavel,S., and S. Petrescu: Inhibition of gonadotrophin by a highly purified pineal peptide and by synthetic arginine vasotocin. Nature, Lond., 212,1054 (1966).

    Google Scholar 

  • Pellegrino De Iraldi,A., and R. De Lores Arnaiz: 5-Hydroxytryptophan decarboxylase activity in normal and denervated pineal glands of rats. Life Sci. 3, 589593 (1964).

    Google Scholar 

  • Pellegrino De Iraldi, A.,and L. M. Zieher: Noradrenaline and dopamine content of normal, decentralized and denervated pineal gland of the rat. Life Sci. 5, 149–154 (1966).

    Google Scholar 

  • Pellegrino De Iraldi,A., L. M. Zieher,and E. De Robertis: The 5-hydroxytryptamine content and synthesis of normal and denervated pineal gland. Life Sci. 9, 691–696 (1963).

    Google Scholar 

  • Pellegrino De Iraldi,A., L. M. Zieher,and E. De Robertis: Ultrastructure and pharmacological studies of nerve endings in the pineal organ. Progr. Brain Res. 10,389–421 (1965).

    Google Scholar 

  • Prop, N.: Lipids in the pineal body of the rat. Progr. Brain Res. 10,454–463 (1965).

    Google Scholar 

  • Prop, N.,and J. Ariens Kappers: Demonstration of some compounds present in the pineal organ of the albino rat by histochemical methods and paper chromatography. Acta Anat., Basel, 45, 90–109 (1961).

    Google Scholar 

  • Pun, J. Y.,and L. Lombrozo: Microelectrophoresis of brain and pineal proteins in polyacrylamide gel. Analyt. Biochem. 9, 9–20 (1964).

    Google Scholar 

  • Quay, W. B.: Reduction of mammalian pineal weight and lipid during continuous light. Gen. comp. Endocrinol. 1, 211–217 (1961).

    Google Scholar 

  • Quay, W. B.: Metabolic and cytologic evidence of pineal inhibition by continuous light. Amer. Zool. 2,550 (1962).

    Google Scholar 

  • Quay, W. B.: Cytologic and metabolic parameters of pineal inhibition by continuous light in the rat, Rattus norvegicus. Z. Zellforsch. 60,479–490 (1963 a).

    Google Scholar 

  • Quay, W. B.: Circadian rhythm in rat pineal serotonin and its modification by estrous cycle and photoperiod. Gen. comp. Endocrinol. 3, 473–479 (1963 b).

    Google Scholar 

  • Quay, W. B.: Indole derivatives of pineal and related neural and retinal tissues. Pharmacol. Rev. 17,321–345 (1965).

    Google Scholar 

  • Quay, W. B.,and A. Halevy: Experimental modification of the rat’s pineal content of serotonin and related indole amines. Physiol. Zool. 1,1–7 (1962).

    Google Scholar 

  • Quay, W. B., J. F. Jongkind,and J. Ariëns Kappers: Localizations and experimental changes in monoamines of the reptilian pineal complex studied by fluorescence histochemistry. Anat. Rec. 157,304–305 (1967).

    Google Scholar 

  • Quay, W. B., J. Ariëns Kappers,and J. F. Jongkind: Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake (Natrix natrix). J. Neuro-Viscer. Relat. 31, 11–25 (1968).

    Google Scholar 

  • Reiss, M., R. H. Davis, M. B. Sideman, I. Mauer,and E. S. Plichta: Action of pineal extracts on the gonads and their function. J. Endocrin. 27,107–118 (1963 a).

    Google Scholar 

  • Reiss, M., I. Mauer, M. B. Sideman, R. H. Davis,and E. S. Plichta: Pituitarypineal-brain interrelationships. J. Neurochem. 10,851–857 (1963 b).

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R. J.: The pineal gland: a report of some recent physiological studies. Edgewood Arsenal Technical Report, 4110, 1–108. Res. Laborat. US Army Edge-wood Arsenal, Maryland (1967).

    Google Scholar 

  • Reiter, R. J.,and R. J. Hester: Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters. Endocrinology 79, 1168–1169 (1966 a).

    Google Scholar 

  • Reiter, R. J.,and R. J. Hester: Neuroendocrinological interrelationships. In: Metabolic Regulation of Physiological Activity, ed. by B. Sacktor, R. J. Reiter, J. E. Wilson, H. J. Smith, C. G. Tiekert,and R. J. Hester,13–18. Medical Research Laboratory, Research Laboratories US Army, Edgewood Arsenal, Maryland, USA, 1966 b.

    Google Scholar 

  • Reiter, R. J., R. A. Hoffman,and R. J. Hester: The role of the pineal gland and of environmental lighting in the regulation of the endocrine and reproductive system of rodents. Edgewood Arsenal Technical Report, 4032, 1–43. Res. Laborat. US Army Edgewood Arsenal, Maryland (1966 a).

    Google Scholar 

  • Reiter, R. J., R. A. Hoffman,and R. J. Hester: The effects of thiourea, photo-period and the pineal gland on the thyroid, adrenal and reproductive organs of female hamsters. J. exp. Zool. 162,263–268 (1966 b).

    Article  Google Scholar 

  • Richardson, K. C.: The fine structure of the albino rat iris with special reference to the identification of adrenergic and cholinergie nerves and nerve endings in its intrinsic muscles. Amer. J. Anat. 114,173–205 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Rinehart, J. F.,and M. G. Farquhar: The fine vascular organization of the anterior pituitary gland. An electron microscopic study with histochemical correlations. Anat. Rec. 121,207–239 (1955).

    Google Scholar 

  • Rodin, A. E.,and R. A. Turner: The relationship of intravesicular granules to the innervation of the pineal gland. Lab. Invest. 14,1644–1651 (1965).

    Google Scholar 

  • Rodin, A. E.,and R. A. Turner: The perivascular space of the pineal gland. Tex. Rep. Biol. Med. 24,153–163 (1966).

    Google Scholar 

  • Roth, W. D.: Metabolic and morphologic studies on the rat pineal organ during puberty. Progr. Brain Res. 10,552–562 (1965).

    Google Scholar 

  • Sano, Y.,und T. Mashimo: Elektronenmikroskopische Untersuchungen an der Epiphysis cerebri beim Hund. Z. Zellforsch. 69, 129–139 (1966).

    Google Scholar 

  • Scharenberg, K.,and L. Liss: The histologic structure of the human pineal body. Progr. Brain Res. 10,193–217 (1965).

    Google Scholar 

  • Scharrer, E.: Photo-neuro-endocrine systems: general concepts. New York Acad. Sci. 117,13–22 (1964).

    Google Scholar 

  • Simonnet, H., L. Thiéblot,et T. Melik: Influence de l’épiphyse sur l’ovaire de la jeune rate. Ann. Endocrinol., Paris, 12,202–205 (1951).

    Google Scholar 

  • Snyder, S. H.,and J. Axelrod: A sensitive assay for 5-hydroxytryptophan de-carboxylase. Biochem. Pharmacol. 13, 805–806 (1964 a).

    Google Scholar 

  • Snyder, S. H.,and J. Axelrod: Influence of light and the sympathetic nervous system on 5-hydroxytryptophan decarboxylase (5-HTPD) activity in the pineal gland. Fed. Proc. 23,206 (1964 b).

    Google Scholar 

  • Snyder, S. H., J. Axelrod, J. E. Fischer,and R. J. Wurtman: Neural and photic regulation of 5-hydroxytryptophan decarboxylase in the rat pineal gland. Nature, Lond., 203,981 (1964).

    Google Scholar 

  • Snyder, S. H., J. Axelrod,R. J. Wurtman,and J. E. Fischer: Control of 5-hydroxytryptophan decarboxylase activity in the rat pineal gland by sympathetic nerves. J. Pharmacol. exp. Ther. 147,371–375 (1965).

    Google Scholar 

  • Szentâgothai, J., B. Flerko, B. Mess,and B. Halész: Hypothalamic control of the anterior pituitary. P. 97. Budapest: Akadémiai Kiadó, 1962.

    Google Scholar 

  • Taxi, J.,et B. Droz: etude de l’incorporation de noradrénaline-3H (NA-3H) et de 5-hydroxytryptophane-3H (5-HTP-3H) dans l’épiphyse et le ganglion cervical supérieur. C. R. Acad. Sci., Paris, 263,1326–1329 (1966).

    Google Scholar 

  • Taxi, J.,et B. Droz: Localisation d’amines biogènes dans le système neurovégétatif périphérique. (Étude radioautographique en microscopie électronique après injection de noradrénaline-3H et de 5-hydroxytryptophane-3H.) In: Neurosecretion, Proc. 4th int. Symp. Neurosecretion, Strasbourg, 25–27 Juillet, 1966, F. Stutinsky ed., 191–202. Berlin: Springer, 1967.

    Google Scholar 

  • Thiéblot,L.: Physiology of the pineal body. Progr. Brain Res. 10,479–488 (1965).

    Google Scholar 

  • Thiéblot,L., et S. Blaise: Influence de la glande pinéale sur les gonades. Ann. Endocrinol., Paris, 24,270–286 (1963).

    Google Scholar 

  • Vivien, J. H.,et B. Roëls: Ultrastructure de l’épiphyse des chéloniens. Présence d’un «paraboloïde» et de structures de type photorécepteur dans l’épithélium sécrétoire de Pseudemys scripta elegans. C. R. Acad. Sci., Paris, 264,1743–1746 (1967).

    Google Scholar 

  • Vollrath,L.: The ultrastructure of the eel pituitary at the elver stage with special reference to its neurosecretory innervation. Z. Zellforsch. 73, 107–131 (1966).

    Google Scholar 

  • Wartenberg, H.: The mammalian pineal organ: electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Z. Zellforsch. 86, 74–97 (1968).

    Google Scholar 

  • Wartenberg, H.,und H. G. Baumgarten: Elektronenmikroskopische Untersuchungen zur Frage der photosensorischen und sekretorischen Funktion des Pineal-organs von Lacerta viridis und L. muralis. Z. Zellforsch. 127,99–120 (1968).

    Google Scholar 

  • Wartenberg, H.,und W. Gusek: Licht-und elektronenmikroskopische Beobachtungen über die Struktur der Epiphysis cerebri des Kaninchens. Progr. Brain Res. 10,296–315 (1965).

    Google Scholar 

  • Wittkowski, W.: Kapillaren und perikapilläre Räume im Hypothalamus-Hypophysen-System und ihre Beziehungen zum Nervengewebe. Eine elektronenmikroskopische Studie am Meerschweinchen. Z. Zellforsch. 81,344–360 (1967 a).

    Google Scholar 

  • Wittkowski, W.: Synaptische Strukturen und Elementargranula in der Neuro-hypophyse des Meerschweinchens. Z. Zellforsch. 82,434–458 (1967 b).

    Google Scholar 

  • Wolfe, D. E.: The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Progr. Brain Res. 10,332–376 (1965).

    Google Scholar 

  • Wolfe, D. E., L. T. Potter, K. C. Richardson,and J. Axelrod: Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138,440 442 (1962).

    Google Scholar 

  • Wragg, L. E.: Effects of pinealectomy in the newborn female rat. Amer. J. Anat. 120,391–402 (1967).

    Google Scholar 

  • Wurtman, R. J.,and J. Axelrod: The formation, metabolism and physiologic effects of melatonin in mammals. Progr. Brain Res. 10,520–528 (1965 a).

    Google Scholar 

  • Wurtman, R. C.,and J. Axelrod: The pineal gland. Sci. Amer. 213,50–60 (1965 b).

    Google Scholar 

  • Wurtman, R. J., M. D. Altschule,and U. Holmgren: Effects of pinealectomy and of a bovine pineal extract in rats. Amer. J. Physiol. 197, 108–110 (1959).

    Google Scholar 

  • Wurtman, R. J., J. Axelrod,and E. W. Chu: Melatonin, a pineal substance: effect on the rat ovary. Science 141,277–278 (1963).

    Google Scholar 

  • Wurtman, R. J., J. Axelrod,and J. E. Fischer: Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143,1328 (1964).

    Google Scholar 

  • Wurtman, R. J., W. Roth, M. D. Altschule,and J. J. Wurtman: Interactions of the pineal organ and exposure to continuous light on organ weights of female rats. Acta endocrinol. 36, 617–624 (1961).

    Google Scholar 

  • Zenker, W.,und E. Krammer: Untersuchungen über Feinstruktur und Innervation der inneren Augenmuskulatur des Huhnes. Z. Zellforsch. 83, 147–168 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Zieher, L. M.,and A. Pellegrino De Iraldi: Central control of noradrenaline content in rat pineal and submaxillary glands. Life Sci. 5, 155–161 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Zweens, J.: Influence of the oestrous cycle and ovariectomy on the phospholipid content of the pineal gland in the rat. Nature, Lond., 197,1114–1115 (1963).

    Article  CAS  Google Scholar 

  • Zweens, J.: The pineal lipid content in rat and the involvement of the epiphysis cerebri in the hypophyseo-gonadal interrelation. Med. Thesis, 1–107. Groningen: Van Denderen, 1964.

    Google Scholar 

  • Zweens, J.: Alterations of the pineal lipid content in the rat under hormonal influences. Progr. Brain Res. 10,540–551 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Wien

About this chapter

Cite this chapter

Kappers, J.A. (1969). The Mammalian Pineal Organ. In: Kappers, J.A. (eds) Neurohormones and Neurohumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25519-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25519-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-23465-5

  • Online ISBN: 978-3-662-25519-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics