The Neuronal Connexions of the Hypothalamic Neurosecretory Nuclei in Mammals

A General Survey
  • H. J. Lammers


Regarding the hypothalamic magnocellular and parvocellular neurosecretory nuclei as constituting a final common path (Sherrington), influencing the activity of neuro- and adenohypophysis respectively, a survey is given of the intrinsic and extrinsic afferent neuronal relations of these nuclei as revealed by Golgi and Nauta-Gygax studies.

The parvocellular nuclei receive their most important afferent input from the medial hypothalamus, viz. the ventro-medial nucleus as well as from the periventricular hypothalamic area. The ventro-medial nucleus serves as a relay center between the lateral hypothalamus forming part of the limbic system-midbrain circuit on one hand and the parvocellular nuclei, viz. the arcuate or infundibular nucleus on the other.

Data on the afferent relations of the magnocellular nuclei are still scarce. It seems justified however, to assume that these nuclei receive their main afferent input from the limbic system-midbrain circuit, viz. from the septal and lateral preoptic area. Attention is paid to recent findings on aminergic and cholinergic afferent projections to the neurosecretory nuclei of the hypothalamus. As a preliminary conclusion one may presume a rather dominant aminergic influence on the activities of the parvocellular nuclei, the magnocellular nuclei being influenced by both aminergic and cholinergic afferents.


Lateral Hypothalamus Preoptic Area Supraoptic Nucleus Olfactory Tubercle Neuronal Connexion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K.: Physiology and pathophysiology of the hypothalamus. In: Schalten-brand, G., and P. Bailey: Introduction to stereotaxis with an atlas of the human brain, 152–225. Stuttgart: G. Thieme Verlag, 1959.Google Scholar
  2. Andén, N.-E., A. Dahlström, K. Faxe, K. Larsson, L. Olson, and U. Ungerstedt: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. Scand. 67, 313–326 (1966).Google Scholar
  3. Blümcke, S.: Vergleichend experimentell-morphologische Untersuchungen zur Frage einer retino-hypothalamischen Bahn bei Hund, Meerschweinchen und Katze. Zschr. mikrosk.-anat. Forsch., Leipzig, 67, 469–513 (1961).Google Scholar
  4. Broca, P.: Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique et la scissure limbique dans la série des mammifères. Rev. anthrop., Paris, 2e sér., 1, 385–498 (1878).Google Scholar
  5. Brutkowski, St.: Functions of prefrontal cortex in animals. Physiol. Rev., Baltimore, 45, 721–746 (1965).Google Scholar
  6. Carlsson, A., B. Falck, N.-A. Hillarp, G. Thieme, and A. Torp: A new histochemical method for visualization of tissue catecholamines. Med. Exper. 4, 123–125 (1961).Google Scholar
  7. Carlsson, A., B. Falck, N.-A. Hillarp, and A. Torp: Histochemical localization at the cellular level of hypothalamic noradrenaline. Acta physiol. Scand. 54, 385–386 (1962).Google Scholar
  8. Cowan, W. M., G. Raisman, and T. P. S. Powell: The connexions of the amygdala. J. Neurol., London, 28, 137–151 (1965).Google Scholar
  9. Cragg, B. G.: Olfactory and other afferent connexions of the hippocampus in the rabbit, rat and cat. Exper. Neurol. 3, 588–600 (1961).CrossRefGoogle Scholar
  10. Dahlström, A., and K. Fuxe: Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. Scand. 62, Suppl. 232 (1965).Google Scholar
  11. Die pen, R.: Der Hypothalamus. In: Handb. d. mikr. Anatomie des Menschen, von Möllendorf, ed., Bd. 4, Berlin: Springer Verlag (1962).Google Scholar
  12. Diepen, R., P. Jansen, Fr. Engelhardt, et H. Spatz: Recherches sur le cerveau de l’éléphant d’Afrique (Loxodonta africana Blum). Données sur l’hypothalamus. Acta neurol. psychiatr. Belg. 11, 759–788 (1956).Google Scholar
  13. Falck, B.: Observations on the possibilities of the cellular localizations of monoamines by a fluorescence method. Acta physiol. Scand. 56, Suppl. 197, 1–26 (1962).Google Scholar
  14. Falck, B., N.-A. Hillarp, G. Thieme, and A. Torp: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).CrossRefGoogle Scholar
  15. Feldman, S.: Visual projections to the hypothalamus and preoptic area. Ann. N. Y. Ac. Sci. 117, 53–68 (1964).CrossRefGoogle Scholar
  16. Fink, R. P., and L. Heimer: Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4, 369–374 (1967).PubMedCrossRefGoogle Scholar
  17. Frey, E.: Neue anatomische und experimentelle Ergebnisse über das optische Gebiet im Hypothalamus. Schweiz. Arch. Neurol. Psych. 66, 67–86 (1950).Google Scholar
  18. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system. Acta physiol. Scand. 64, Suppl. 247, 37–85 (1965).Google Scholar
  19. Fuxe, K., and T. Hökfelt: Further evidence for the existence of tubero-infundibular dopamine neurons. Acta physiol. Scand. 66, 245–246 (1966).Google Scholar
  20. Gastaut, H., et H. J. Lammers: Anatomie du Rhinencéphale. Les grandes activités du Rhinencéphale, vol. 1. Paris: Masson & Cie. 1961.Google Scholar
  21. Giolli, R. A.: An experimental study of the accessory optic system in the cynomolgus monkey. J. Comp. Neur. 121, 89–108 (1963).PubMedCrossRefGoogle Scholar
  22. Glees, P.: The interrelation of the strio-pallidum and the thalamus in the macaque monkey. Brain, 68, 331–346 (1945).PubMedCrossRefGoogle Scholar
  23. Guillery, R. W.: Degeneration in the post-commissural fornix and the mamillary peduncle of the rat. J. Anat. 90, 350–371 (1956).PubMedGoogle Scholar
  24. Guillery, R. W.: Degeneration in the hypothalamic connexions of the albino rat. J. Anat. 91, 91–115 (1957).PubMedGoogle Scholar
  25. Harris, G. W.: The reticular formation, stress, and endocrine activity. In: Reticular Formation of the Brain (Henry Ford Hospital International Symposium), 207–221 (1958). Boston: Little, Brown and Co.Google Scholar
  26. Hayhow, W. R.: An experimental study of the accessory optic fiber system in the cat. J. Comp. Neur. 113, 281–314 (1959).PubMedCrossRefGoogle Scholar
  27. Hayhow, W. R., C. Webb, and A. Jervie: The accessory optic fiber system in the rat. J. Comp. Neur. 115, 187–215 (1960).PubMedCrossRefGoogle Scholar
  28. Knoche, H.: Die retino-hypothalamische Bahn von Mensch, Hund und Kaninchen. Zschr. mikrosk.-anat. Forsch. 63, 461–486 (1957).Google Scholar
  29. Knoche, H.: Ursprung, Verlauf und Endigung der retino-hypothalamischen Bahn. Z. Zellforsch. 51, 658–704 (1960).PubMedCrossRefGoogle Scholar
  30. Knook, H. L., The fibre-connections of the forebrain. Med. Thesis. Assen: v. Gorcum & Cie, 1965.Google Scholar
  31. Lammers, H. J., and A. H. M. Lohman: Experimenteel anatomisch onderzoek naar de verbindingen van piriforme cortex en amygdala kernen bij de kat. Ned. T. Geneesk. 101, 602–603 (1957).Google Scholar
  32. Lohman, A. H. M.: The anterior olfactory lobe of the guinea pig. Acta Anat. 53, Suppl. 49 (1963).Google Scholar
  33. Lohman, A. H. M., and H. J. Lammers: On the structure and fibre connexions of the olfactory centres in mammals. In: Progress in Brain Research, 23. Sensory mechanisms, 65–82 (1967). Amsterdam: Elsevier Publ. Cie.Google Scholar
  34. Lundberg, P. 0.: Cortico-hypothalamic connexions in the rabbit. Acta physiol. Scand. 49, Suppl. 171 (1960).Google Scholar
  35. MacLean, P. D.: Some psychiatric implications of physiological studies on fronto-temporal portion of limbic system (visceral brain). EEG Clin. Neurophysiol. 4, 407–418 (1952).Google Scholar
  36. Nauta, W. J. H.: An experimental study of the fornix system in the rat. J. Comp. Neurol. 104, 247–271 (1956).PubMedCrossRefGoogle Scholar
  37. Nauta, W. J. H.: Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 82, 319–340 (1958).CrossRefGoogle Scholar
  38. Nauta, W. J. H.: Fibre degeneration following lesions of the amygdaloid complex in the monkey. J. Anat. 95, 515–531 (1961).PubMedGoogle Scholar
  39. Nauta, W. J. H.: Neural associations of the amygdaloid complex in the monkey. Brain 85, 505–519 (1962).PubMedCrossRefGoogle Scholar
  40. Nauta, W. J. H.: Central nervous organization and the endocrine motor system. In: Advances in neuroendocrinology. A. V. Nalbandov ed., Urbana: University of Illinois Press, 5–21 (1963).Google Scholar
  41. Nauta, W. J. H., and P. A. Gygax: Silver impregnation of degenerating axons in the central nervous system. A modified technique. Stain Technol. 92, 91–93 (1954).Google Scholar
  42. Nauta, W. J. H., and H. Kuypers: Some ascending pathways in the brain stem reticular formation. In: Reticular Formation of the Brain (Int. Symp. Henry Ford Hospital, Detroit) 3–30 (1958). Boston: Little, Brown and Cy.Google Scholar
  43. Nauta, W. J. H., and W. R. Mehler: Some efferent connections of the lentiform nucleus in monkey and cat. Anat. Rec. 139, 260 (1961).Google Scholar
  44. Nauta, W. J. H., and W. R. Mehler: Projections of the lentiform nucleus in the monkey. Brain Res. 1, 342 (1966).CrossRefGoogle Scholar
  45. Nauta, W. J. H., and D. G. Whitlock: An anatomical analysis of the nonspecific thalamic projection system. In: Brain mechanism and conciousness (Symposium by the Counc. Internat. Organ. Med. Sci.) 81–116 (1954). Oxford: Blackwell.Google Scholar
  46. Powell, E. W., and D. K. Rorie: Septal projections to nuclei functioning in oxytocin release. Am. J. Anat. 120, 605–610 (1967).PubMedCrossRefGoogle Scholar
  47. Powell, T. P. S., W. M. Cowan, and G. Raisman: The central olfactory connexions. J. Anat. 99, 791–813 (1965).PubMedGoogle Scholar
  48. Pribram, K. H., and L. Krüger: Functions of the `olfactory brain’. Ann. N. Y. Ac. Sci. 58, 109–138 (1954).CrossRefGoogle Scholar
  49. Raisman, G.: The connexions of the septum. Brain 89, 317–348 (1966 a).Google Scholar
  50. Raisman, G.: Neural connexions of the hypothalamus. In: Recent Studies on the Hypothalamus. Brit. Med. Bull. 22, 197–201 (1966 b).Google Scholar
  51. Sanders-Woudstra, J. A. R.: Experimenteel anatomisch onderzoek over de verbindingen van enkele basale telencephale hersengebieden bij de albino rat. Thesis, Groningen 1961.Google Scholar
  52. Scharrer, E.: The final common path in neuroendocrine integration. Arch. Anat. micr. Morph. exp. 54, 359–370 (1965).PubMedGoogle Scholar
  53. Sherrington, Ch.: The integrative action of the nervous system. Cambridge: Univ. Press 1947.Google Scholar
  54. Shute, C. C. D., and P. R. Lewis: The use of cholinesterase techniques combined with operative procedures to follow nervous pathways in the brain. Bibl. anat. 2, 34–49 (1961). Basle: Karger.Google Scholar
  55. Shute, C. C. D., and P. R. Lewis: Cholinergic and monoaminergic pathways in the hypothalamus. In: Recent Studies of the Hypothalamus. Brit. Med. Bull. 22, 221–226 (1966).Google Scholar
  56. Singleton, M. C., and T. L. Peele: Distribution of optic fibers in the cat. J. Comp. Neur. 125, 303–328 (1965).PubMedCrossRefGoogle Scholar
  57. Stephan, W.: Die kortikalen Anteile des limbischen System. Der Nervenarzt 35, 396–401 (1964).PubMedGoogle Scholar
  58. Szentâgothai, J., B. Flerkó, B. Mess, and B. Haldsz: Hypothalamic Control of the Anterior Pituitary. Budapest: Akadémiai Kiadó, 1962.Google Scholar
  59. Valenstein, E. S., and W. J. H. Nauta: A comparison of the distribution of the fornix system in the rat, guinea pig, cat and monkey. J. Comp. Neur. 113, 337–364 (1959).PubMedCrossRefGoogle Scholar
  60. Whitlock, D. G., and W. J. H. Nauta: Subcortical projections from the temporal neocortex in Macaca mulatta. J. Comp. Neur. 106, 183–212 (1956).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1969

Authors and Affiliations

  • H. J. Lammers
    • 1
  1. 1.Department of Anatomy and Embryology, Medical FacultyCatholic UniversityNijmegenThe Netherlands

Personalised recommendations