Skip to main content

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 1736 Accesses

Abstract

In the theory of zero-sum, two-person games the basic theorem was proved by John von Neumann; he used the Brouwer fixed-point theorem. In the theory of many-person games the basic theorem was proved by J. F. Nash; he also used the Brouwer fixed-point theorem. We will prove Nash’s theorem with the Kakutani fixed-point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. Vol. 3 (1922) pp. 133–181.

    MATH  Google Scholar 

  2. D. R. Smart, Fixed Point Theorems, Cambridge Univ. Press, 1974.

    Google Scholar 

  3. L. E. J. Brouwer, Uber Abbildung und Mannigfaltigkeiten, Math. Ann. Vol. 71 (1910) pp. 97–115.

    Article  MathSciNet  Google Scholar 

  4. E. Heinz, An elementary analytic theory of the degree of mapping in n-dimensional space, J. Math. Mech. Vol. 8 (1959) p. 231.

    MathSciNet  MATH  Google Scholar 

  5. N. Dunford and J. T. Schwartz, Linear Operators, Vol. 1, 1958, Interscience, New York.

    Google Scholar 

  6. J. Milnor, Analytic proofs of the “hairy ball theorem” and the Brouwer fixed point theorem, American Math. Monthly, Vol. 85 No. 7 (1978), pp. 521–524.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Asimov, Average Gaussian curvature of leaves of foliations, preprint, 1976. Bull. Amer. Math. Soc. 84, (1978) pp. 131–133.

    MathSciNet  Google Scholar 

  8. W. M. Boothby, On two classical theorems of algebraic topology, Amer. Math. Monthly, Vol. 78 (1971) pp. 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Hilton and S. Wylie, Homology Theory, Cambridge University Press, New York, 1960, pp. 218–219.

    Book  MATH  Google Scholar 

  10. M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976, pp. 73, 134.

    Google Scholar 

  11. S. Lang, Analysis II, Addison-Wesley, Reading, Mass., 1969, pp. 50, 121.

    Google Scholar 

  12. J. Milnor, Topology from the Differentiable Viewpoint, Univ. Press of Va., Charlottesville, 1965, pp. 14, 30.

    Google Scholar 

  13. E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966, pp. 151, 194.

    Google Scholar 

  14. J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. Vol. 2 (1930) pp. 171–180.

    MATH  Google Scholar 

  15. G. Plya, How to Solve It, Princeton Univ. Press., 1948.

    Google Scholar 

  16. H. Brezis and F. E. Browder, Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., Vol. 81 (1975) pp. 73–78.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. Vol. 8 (1941) pp. 457–458.

    Article  MathSciNet  Google Scholar 

  18. J. F. Nash, Equilibrium points in n-person games, Proc. Nat. Academy of Sciences, Vol. 36 (1950) pp. 48–49.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franklin, J. (1980). Fixed-Point Theorems. In: Methods of Mathematical Economics. Undergraduate Texts in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25317-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25317-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-90481-6

  • Online ISBN: 978-3-662-25317-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics