Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC))

Abstract

The presence of abundant free oxygen in the terrestrial atmosphere is an anomaly in a solar system and universe composed predominantly of hydrogen. It is, of course, a direct consequence of the presence of life on earth, particularly the presence of photosynthetic organisms that use water as electron donor to reduce carbon dioxide to organic matter, producing molecular oxygen as a waste product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Valen, L.: The history and stability of atmospheric oxygen. Science 171, 439 (1971)

    Google Scholar 

  2. Holland, H.D.: Ocean water, nutrients, and atmospheric oxygen. In: Proceedings of Symposium on Hydrogeochemistry and Biogeochemistry, Vol. 1. Washington, D.C.: The Clarke Co. 1973, p. 68

    Google Scholar 

  3. Holland, H.D.: The Chemistry of the Atmosphere and Oceans. New York: Wiley-Interscience 1978

    Google Scholar 

  4. Walker, J.C.G.: Stability of atmospheric oxygen. Am. J. Sci. 274, 193 (1974)

    Google Scholar 

  5. Walker, J.C.G.: Evolution of the Atmosphere. New York: Macmillan Publishing Co. 1977

    Google Scholar 

  6. Garrels, R.M., Perry, E.A.: Cycling of carbon, sulfur, and oxygen through geologic time. In: The Sea, Vol. 5. E. Goldberg (Ed.). New York: Wiley-Interscience 1974, p. 303

    Google Scholar 

  7. Garrels, R.M., Lerman, A., Mackenzie, F.T.: Controls of atmospheric 02 and CO2: Past, present and future. Am. Sci. 64, 306 (1976)

    Google Scholar 

  8. Schidlowski, M., Eichmann, R., Junge, C.E.: Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res. 2, 1 (1975)

    Google Scholar 

  9. Verniani, F.: The total mass of the Earth’s atmosphere. J. Geophys. Res. 71, 385 (1966)

    Google Scholar 

  10. Degens, E.T.: Carbon in the sea. Nature 279, 191 (1979)

    Google Scholar 

  11. Bowen, H.J.M.: Trace Elements in Biochemistry. New York: Academic Press 1966

    Google Scholar 

  12. Ronov, A.B., Yaroshevsky, A.A.: Chemical structure of the Earth’s crust. Geochemistry, 1041 (1967). (Trans. from Geokhimiya, No. 11, 1285, 1967)

    Google Scholar 

  13. Ronov, A.B., Yaroshevsky, A.A.: Chemical composition of the Earth’s crust. In: The Earth’s Crust and Upper Mantle. P.J. Hart (Ed.). Washington: Am. Geophys. Union Monograph 13, 1969, p. 37

    Google Scholar 

  14. Holligan, P.M.: The productive oceans. Nature 279, 191 (1979)

    Google Scholar 

  15. Hunten, D.M.: The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481 (1973)

    Google Scholar 

  16. Liu, S.C., Donahue, T.M.: The aeronomy of hydrogen in the atmosphere of the earth. J. Atmos. Sci. 31, 1118 (1974)

    Google Scholar 

  17. Liu, S.C., Donahue, T.M.: Mesospheric hydrogen related to exospheric escape mechanisms. J. Atmos. Sci. 31, 1466 (1974)

    Google Scholar 

  18. Lui, S.C., Donahue, T.M.: Realistic model of hydrogen constituents in the lower atmosphere and escape flux from the upper atmosphere. J. Atmos. Sci. 31, 2238 (1974)

    Google Scholar 

  19. Burns, R.C., Hardy, R.W.F.: Nitrogen fixation in bacteria and higher plants. New York: Springer-Verlag 1975

    Google Scholar 

  20. Dawson, G.A.: Atmospheric ammonia from undisturbed land. J. Geophys. Res. 82, 3125 (1977)

    Google Scholar 

  21. Graedel, T.E.: The kinetic photochemistry of the marine atmosphere. J. Geophys. Res. 84, 273 (1979)

    Google Scholar 

  22. Graedel, T.E.: The oxidation of ammonia, hydrogen sulfide, and methane in nonurban tropospheres. J. Geophys. Res. 82, 5917 (1977)

    Google Scholar 

  23. Deuser, W.G. et al.: Methane in Lake Kivu: New data bearing on its origin. Science 181, 51 (1973)

    Google Scholar 

  24. Zeikus, J.G., Winfrey, M.R.: Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbial. 31, 99 (1976)

    Google Scholar 

  25. Dacey, J.W.H., Klug, M.J.: Methane flux from lake sediments through water lilies. Science 203, 1253 (1979)

    Google Scholar 

  26. Wolfe. R.S.: Microbial formation of methane. Advances in Microbial Physiology 6, 107 (1971)

    Google Scholar 

  27. Gray, C.T., Geit, H.: Biological formation of molecular hydrogen. Science 148, 186 (1965)

    Google Scholar 

  28. Levy, H.: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 173, 141 (1971)

    Google Scholar 

  29. Levy, H:: Photochemistry of the lower troposphere. Planet. Space Sci. 20, 919 (1972)

    Google Scholar 

  30. Levy, H.: Photochemistry of minor constituents in the troposphere. Planet. Space Sci. 21, 575 (1973)

    Google Scholar 

  31. Levy, H.: Tropospheric budgets for methane, carbon monoxide, and related species, J. Geophys. Res. 78, 5325 (1973)

    Google Scholar 

  32. Logan, J.A. et al.: Atmospheric chemistry: Response to human influence. Phil Trans. Roy. Soc 290, 187 (1978)

    Google Scholar 

  33. Ehhalt, D.H., Schmidt, U.: Sources and sinks of atmospheric methane. Pure Appl. Geophys. 116, 452 (1978)

    Google Scholar 

  34. Rudd, J.W.M., Hamilton, R.D.: Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr. 23, 337 (1978)

    Google Scholar 

  35. Whitby, R.A., Coffey, P.E.: Measurement of terpenes and other organics in an Adirondack Mountain pine forest. J. Geophys. Res. 82, 5928 (1977)

    Google Scholar 

  36. Friend, J.P.: The global sulfur cycle. In: Chemistry of the Lower Atmosphere. S. I. Rasool (Ed.). New York: Plenum Press 1973, p. 177

    Google Scholar 

  37. Garrels, R.M., Mackenzie, F.T., Hunt, C.: Chemical Cycles and the Global Environment. Los Altos, California: William Kaufmann, Inc. 1973

    Google Scholar 

  38. Postgate, J.R.: The sulphur cycle. In: Inorganic Sulfur Chemistry. G. Nickless (Ed.). New York: Elsevier 1968, p. 259

    Google Scholar 

  39. Berner, R.A.: Sedimentary pyrite formation. Amer. J. Sci. 268, 1 (1970)

    Google Scholar 

  40. Berner, R.A.: Principles of Chemical Sedimentology. New York: McGraw-Hill 1971

    Google Scholar 

  41. Berner, R.A.: Sulfate reduction, pyrite formation, and the oceanic sulfur budget. In: The Changing Chemistry of the Oceans. D. Dyrssen and D. Jagner (Ed.). New York: Wiley 1972, p. 347

    Google Scholar 

  42. Stanier, R.Y., Douderoff, M., Adelberg, E.A.: The Microbial World, 3rd edition, Englewood Cliffs, New Jersey: Prentice-Hall Inc. 1979

    Google Scholar 

  43. Watson, A., Lovelock, J.E., Margulis, L.: Methanogenesis, fires and the regulation of atmospheric oxygen. Bio Systems 10, 293 (1978)

    Google Scholar 

  44. Chameides, W.L. et al.: NOx production in lightning. J. Atmos. Sci. 34, 143 (1977)

    Google Scholar 

  45. Chameides, W.L.: Effect of variable energy input on nitrogen fixation in instantaneous linear discharges. Nature 277, 123 (1979)

    Google Scholar 

  46. Kennedy, G.C.: Equilibrium between volatiles and iron oxides in igneous rocks. American J. Sci. 246, 529 (1948)

    Google Scholar 

  47. Holland, H.D.: Model for the evolution of the Earth’s atmosphere. In: Petrologic Studies: A Volume in Honor of A.F. Buddington. A.E.J. Engel, H.L. James, and B.F. Leonard (Ed.). New York: Geological Society of America 1962, p. 447

    Google Scholar 

  48. Holland, H.D.: On the chemical evolution of the terrestrial and cytherean atmospheres. In: The Origin and Evolution of Atmospheres and Oceans. P.J. Brancazio and A.G.W. Cameron (Ed.). New York: John Wiley and Sons 1964, p. 86

    Google Scholar 

  49. Heald, E.F., Naughton, J., Barnes, I.L.: The chemistry of volcanic gases, use of equilibrium calculations in the interpretation of volcanic gas samples. J. Geophys. Res. 68, 545 (1963)

    Google Scholar 

  50. Fanale, F.P.: History of Martian volatiles: Implications for organic synthesis. Icarus 15, 279 (1971)

    Google Scholar 

  51. Nordlie, B.E.: Gases-Volcanic. In: The Encyclopedia of Geochemistry and Environmental Science. R.W. Fairbridge (Ed.). New York: Van Nostrand 1972, p. 387

    Google Scholar 

  52. Cruikshank, D.P., Morrison, D., Lennon, K.: Volcanic gases: Hydrogen burning at Kilauea Volcano, Hawaii. Science 182, 277 (1973)

    Google Scholar 

  53. Allard, P., Tazieff, H., Dajlevic, D.: Observations of seafloor spreading in Afar during the November 1978 fissure eruption. Nature 279, 30 (1979)

    Google Scholar 

  54. Heath, G.R., Moore, T.C., Dauphin, J.P.: Organic carbon in deep-sea sediments. In: The

    Google Scholar 

  55. Fate of Fossil Fuel CO2 in the Oceans. N.R. Anderson and A. Malahoff (Ed.). New York: Plenum Press 1978, p. 605

    Google Scholar 

  56. Degens, E.T.: Biogeochemistry of stable carbon isotopes. In: Organic Geochemistry; Methods and Results. G. Eglinton and M.T.J. Murphy (Ed.). Berlin: Springer-Verlag 1969, p. 304

    Google Scholar 

  57. Richards, F.A.: Anoxic basins and fjords. In: Chemical Oceanography, Vol. 1. J.P. Riley and G. Skirrow (Ed.). New York: Academic Press 1965, p. 611

    Google Scholar 

  58. Deuser, W.G.: Organic-carbon budget of the Black Sea. Deep-Sea Res. 18, 995 (1971)

    Google Scholar 

  59. Berner, R.A.: An idealized model of dissolved sulfate distribution in recent sediments. Geochim. Cosmochim. Acta 28, 1497 (1964)

    Google Scholar 

  60. Irwin, H., Curtis, C., Coleman, M.: Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209 (1977)

    Google Scholar 

  61. Morris, J.G.: The physiology of obligate anaerobiosis. In: Advances in Microbial Physiology, Vol. 12, A.H. Rose and D.W. Tempest (Ed.). New York: Academic Press 1975, p. 169

    Google Scholar 

  62. Martens, C.S., Berner, R.A.: Methane production in the interstitial water of sulfate-depleted marine sediments. Science 185, 1167 (1974)

    Google Scholar 

  63. Rhoads, D.C.: The influence of deposit-feeding benthos on water turbidity and nutrient recycling. Amer. Jour. Sci. 273, 1 (1973)

    Google Scholar 

  64. Reimer, T.O., Barghoorn, E.S., Margulis, L.: Primary productivity in an early Archean microbial ecosystem. Precambrian Research 9, 93 (1979)

    Google Scholar 

  65. Koblentz-Mishke, O.J., Volkovinsky, V.V., Kabanova, J.G.: Plankton primary production of the world ocean. In: Scientific Exploration of the South Pacific. W.S. Wooster (Ed.). Washington: National Academy of Sciences 1970, p. 183

    Google Scholar 

  66. Broecker, W.S.: A boundary condition on the evolution of atmospheric oxygen. J. Geophys. Res. 75, 3553 (1970)

    Google Scholar 

  67. Richards, F.A.: The enhanced preservation of organic matter in anoxic marine environments. In: Symposium on Organic Matter in Natural Waters. D.W. Hood (Ed.). Occas. Pub. Inst. Mar. Sci. Univ. Alaska 1. 399 (1970)

    Google Scholar 

  68. Sackett, W.M., Poag, C.W., Eadie B.J.: Kerogen recycling in Ross Sea, Antarctica. Science 185, 1045 (1974)

    Google Scholar 

  69. Holland, H.D.: Systematics of the isotopic composition of sulfur in the oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochim. Cosmochim. Acta 37, 2605 (1 973)

    Google Scholar 

  70. Schidlowski, M., Junge, C.E., Pietrek, H.: Sulfur isotope variations in marine sulfate evaporites and the Phanerozoic oxygen budget. J. Geophys. Res. 82, 2557 (1977)

    Google Scholar 

  71. Rasmussen, R.A., Went, F.W.: Volatile organic material of plant origin in the atmosphere. Proc. Nat. Acad. Sci. 53, 215 (1965)

    Google Scholar 

  72. Graedel, T.E.: Reduced sulfur emission from the open oceans. Geophys. Res. Lett. 6, 329 (1979)

    Google Scholar 

  73. Chameides, W.L., Stedman, D.H.: Tropospheric ozone: Coupling transport and photochemistry. J. Geophys. Res. 82, 1787

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walker, J.C.G. (1980). The Oxygen Cycle. In: The Natural Environment and the Biogeochemical Cycles. The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-24940-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-24940-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22988-0

  • Online ISBN: 978-3-662-24940-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics