Skip to main content

Glutamate Receptors, Nitric Oxide, and Cyclic GMP

  • Conference paper
Excitatory Amino Acids and Second Messenger Systems

Part of the book series: Schering Foundation Workshop ((SCHERING FOUND,volume 3))

Abstract

In the 1970s, well before acidic amino acids were recognised as the major excitatory neurotransmitters in the central nervous system (CNS), it was found that application of glutamate by microinjection in vivo or to brain slices in vitro, was able to provoke large increases in the levels of cyclic guanosine monophosphate (cGMP) [1, 2]. A few years later, it was demonstrated that activation of excitatory pathways in vivo would also produce this response [3, 4] suggesting the involvement of synaptic mechanisms.

The laboratory research in this study was supported by the MRC (UK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrendelli JA, Chang MM, Kinscherf DA (1974) Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. J Neurochem 22: 535–540

    Article  PubMed  CAS  Google Scholar 

  2. Mao CC, Guidotti A, Costa E (1974) The regulation of cyclic guanosine mono-phosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res 79: 510–514

    Article  PubMed  CAS  Google Scholar 

  3. Biggio G, Guidotti A (1976) Climbing fiber activation and 3’,5’-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum. Brain Res 107: 365–373

    Article  PubMed  CAS  Google Scholar 

  4. Rubin EH, Ferrendelli JA (1977) Distribution and regulation of cyclic nucleotide levels in cerebellum, in vivo. J Neurochem 29: 43–51

    Article  PubMed  CAS  Google Scholar 

  5. Kimura H, Mittal CK, Murad F (1975) Increases in cyclic GMP levels in brain and liver with sodium azide an activator of guanylate cyclase. Nature 257: 700–702

    Article  PubMed  CAS  Google Scholar 

  6. Miki N, Kawabe Y, Kuriyama K (1977) Activation of cerebral guanylate cyclase by nitric oxide. Biochem Biophys Res Commun 75: 851–856

    Article  PubMed  CAS  Google Scholar 

  7. Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerine, and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucl Res 3: 23–35

    CAS  Google Scholar 

  8. Deguchi T (1977) Activation of guanylate cyclase in cerebral cortex of rat by hydroxylamine. J Biol Chem 252: 596–601

    PubMed  CAS  Google Scholar 

  9. Deguchi T, Yoshioka M (1982) L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. J Biol Chem 257: 1014710151

    Google Scholar 

  10. Garthwaite J, Balazs R (1978) Supersensitivity to the cyclic GMP response to glutamate during cerebellar maturation. Nature 275: 328–329

    Article  PubMed  CAS  Google Scholar 

  11. Garthwaite J (1982) Excitatory amino acid receptors and guanosine 3’,5’-cyclic monophosphate in incubated slices of immature and adult rat cerebellum. Neuroscience 7: 2491–2497

    Article  PubMed  CAS  Google Scholar 

  12. Bunn SJ, Garthwaite J, Wilkin GP (1986) Guanylate cyclase activities in enriched preparations of neurones, astroglia and a synaptic complex isolated from rat cerebellum. Neurochem Int 8: 179–185

    Article  PubMed  CAS  Google Scholar 

  13. Drummond GI (1983) Cyclic nucleotides in the nervous system. Adv Cyclic Nucl Res 15: 373–494

    CAS  Google Scholar 

  14. Garthwaite J, Garthwaite G (1987) Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. J Neurochem 48: 29–39

    CAS  Google Scholar 

  15. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Google Scholar 

  16. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  17. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385–388

    Article  PubMed  CAS  Google Scholar 

  18. Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988) L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153: 1251–1256

    Article  PubMed  CAS  Google Scholar 

  19. Knowles RG, Palacios M, Palmer RMJ, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 89: 51595162

    Google Scholar 

  20. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87: 682–685

    Article  PubMed  CAS  Google Scholar 

  21. Marietta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci 14: 488–492

    Article  Google Scholar 

  22. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770

    Article  PubMed  CAS  Google Scholar 

  23. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P450 reductase. Nature 351: 714–718

    Article  PubMed  CAS  Google Scholar 

  24. East SJ, Garthwaite J (1990) Nanomolar /VG-nitroarginine inhibits NMDA-induced cyclic GMP formation in rat cerebellum. Eur J Pharmacol 184: 311–313

    Article  PubMed  CAS  Google Scholar 

  25. Southam E, East SJ, Garthwaite J (1991) Excitatory amino acid receptors coupled to the nitric oxide: cyclic GMP pathway in rat cerebellum during development. J Neurochem 56: 2072–2081

    Article  PubMed  CAS  Google Scholar 

  26. Stuehr DJ, Olufunmilayo A, Fasehun A, Kwon NS, Gross SS, Gonzalez JA, Levi R, Nathan CF (1991) Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J 5: 98–103

    PubMed  CAS  Google Scholar 

  27. Watkins JC, Olverman HI (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  28. Garthwaite J (1985) Cellular uptake disguises action of L-glutamate on N-methylD-aspartate receptors. Br J Pharmacol 85: 297–307

    Article  PubMed  CAS  Google Scholar 

  29. Southam E, Garthwaite J (1991) Climbing fibres as a source of nitric oxide in the cerebellum. Eur J Neurosci 3: 379–382

    Article  PubMed  Google Scholar 

  30. East SJ, Garthwaite J (1991) NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neuro-sci Lett 123: 17–19

    Article  CAS  Google Scholar 

  31. Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14: 60–67

    Article  PubMed  CAS  Google Scholar 

  32. Shibuki K, Okada D (1991) Endogenous nitric oxide release required for longterm synaptic depression in the cerebellum. Nature 349: 326–328

    Article  PubMed  CAS  Google Scholar 

  33. Gally JA, Montague PR, Reeke GN Jr, Edelman GM (1990) The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 87: 3547–3551

    Article  PubMed  CAS  Google Scholar 

  34. Moncada S, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from L-arginine A pathway for the regulation of cell function and communication. Biochem Pharmacol 38: 1709–1715

    Article  PubMed  CAS  Google Scholar 

  35. Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88: 2811–2814

    Article  PubMed  CAS  Google Scholar 

  36. De Vente J, Bol JGJM, Berkelmans HS, Schipper J, Steinbusch HMW (1990) Immunocytochemistry of cGMP in the cerebellum of the immature, adult, and aged rat: the involvement of nitric oxide. A micropharmacological study. Eur J Neuro-sci 2: 845–862

    Google Scholar 

  37. Knowles RG, Palacios M, Palmer RMJ, Moncada S (1990) Nitric oxide synthase in the brain. In: Moncada S, Higgs EA (eds) Nitric oxide from L-arginine: a bio-regulatory system. Elsevier, Amsterdam, pp 139–146

    Google Scholar 

  38. Brune B, Lapetina EG (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264: 8455–8458

    PubMed  CAS  Google Scholar 

  39. Garg UC, Hassid A (1991) Nitric oxide decreases cytosolic free calcium in Balb/c 3T3 fibroblasts by a cyclic GMP-independent mechanism. J Biol Chem 266: 9–12

    PubMed  CAS  Google Scholar 

  40. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157: 87–94

    Article  PubMed  CAS  Google Scholar 

  41. Moore PK, Oluyomi AO, Babbedge RC, Wallace P, Hart SL (1991) L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol 102: 198–202

    Article  PubMed  CAS  Google Scholar 

  42. Di Paola ED, Vidal MJ, Nistico G (1991) L-Glutamate evokes the release of an endothelium-derived relaxing factor-like substance from the rat nucleus tractus solitarius. J Cardiovasc Pharmacol 17: S269–S272

    Article  Google Scholar 

  43. De Sarro GB, Di Paola ED, De Sarro A, Vidal MJ (1991) Role of nitric oxide in the genesis of excitatory amino acid-induced seizures from the deep prepyriform cortex. Fundam Clin Pharmacol 5: 503–511

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garthwaite, J., Southam, E., East, S.J. (1991). Glutamate Receptors, Nitric Oxide, and Cyclic GMP. In: Teichberg, V.I., Turski, L. (eds) Excitatory Amino Acids and Second Messenger Systems. Schering Foundation Workshop, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22666-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22666-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22668-1

  • Online ISBN: 978-3-662-22666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics