Skip to main content

Oxidative Stress in Alzheimer’s Disease

  • Chapter

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

It has been nearly 90 years since Alois Alzheimer first described the dementing illness asso-ciated with his name.l AD is the most common cause of progressive cognitive decline in the aged population and the most prevalent neurodegenerative disease affecting more than 15 million people wordwile. AD shares the triad hallmark features of β-amyloid plaques (senile plaques; SP), neurofibrillary tangles (NFT) with extensive neuronal loss, particularly in the hippocampus and cerebral cortex, and dementia, which appear to arise sporadically and are typically late in onset (after the age of 65). Familial ADs (FAD) exist and frequently display a much earlier onset of the disease (age 40–50 years).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzheimer A. Uber eine eigenartige erkrantung der Hirnrinde. In: Schulte E, Snell eds. Allgemeine zeitschrift für psychiatrie und psychish-Gerichtliche Medizin. Georg Reimer, Berlin 1907; 64: 146–148.

    Google Scholar 

  2. Kosik K. Alzheimer’s disease sphinx: a riddle with plaques and tangles. J Cell Biol 1994; 127: 1501–1504.

    PubMed  CAS  Google Scholar 

  3. Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 1993; 16: 460–465.

    PubMed  CAS  Google Scholar 

  4. Glenner GG. Alzheimer’s disease: its proteins and genes. Cell 1988; 52: 307–8.

    PubMed  CAS  Google Scholar 

  5. Haass C, Selkoe DJ. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 1993; 75: 1039–42.

    PubMed  CAS  Google Scholar 

  6. Blanquet V, Golgaber D, Turleau C et al. The amyloid protein precursor cDNA hybridizes in normal and Alzheimer individuals near the interface of 21q21 and 21q22.1. Ann Genet 1987; 30: 68–69.

    PubMed  CAS  Google Scholar 

  7. Dyrks T, Weideman A, Multhaup et al. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J 1988; 7: 949–957.

    PubMed  CAS  Google Scholar 

  8. Sisodia SS. β-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 1990; 89: 6075–6079.

    Google Scholar 

  9. Busciglio J, Gabuzda DH, Matsudaira P et al. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 1993; 90: 2092–2096.

    PubMed  CAS  Google Scholar 

  10. Haass C, Schlossmacher MG, Hung AY et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 1992; 359: 322–325.

    PubMed  CAS  Google Scholar 

  11. Perry G, Smith M. Senile plaques and neurofibrillary tangles: what role do they play in Alzheimer’s disease? Clin Neuro-sci 1993; 1: 199–203.

    Google Scholar 

  12. Cras P, Smith MA, Richey PL et al. Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein crosslinking in Alzheimer disease. Acta Neuropathol 1995; 89: 291–295.

    PubMed  CAS  Google Scholar 

  13. Grundke-Iqbal I, Iqbal K, Tung YC et al. Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83: 4913–4917.

    PubMed  CAS  Google Scholar 

  14. Delacourte A, Flament S, Dibe EM et al. Pathological proteins tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer’s disease. Acta Neuropathol 1990; 80: 111–117.

    PubMed  CAS  Google Scholar 

  15. Kosik KS, Orecchio LD, Binder L et al. Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1988; 1: 817–825.

    PubMed  CAS  Google Scholar 

  16. Greenberg SM, Koo EH, Selkoe DJ et al. Secreted β-amyloid precursor protein stimulates mitogen activated protein kinase and enhances tau phosphorylation. Proc Natl Acad Sci USA 1994; 91: 7104–7108.

    Google Scholar 

  17. Busciglio J, Lorenzo A, Yeh J et al. β-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995; 14: 879–888.

    PubMed  CAS  Google Scholar 

  18. Takashima A, Nogushi K, Sato K et al. Tau protein kinase I is essential for amyloid b-protein-induced neurotoxicity. Proc Natl Acad Sci 1993; 90: 7789–7793.

    PubMed  CAS  Google Scholar 

  19. Hoschi M, Takashima A, Nogushi K et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 313 in brain. Proc Natl Acad Sci USA 1996; 93: 2719–2723.

    Google Scholar 

  20. Tanzi RE, St George-Hyslop P, Gusella JF. Molecular genetics of Alzheimer’s disease. J Biol Chem 1991; 266: 20579–20582.

    PubMed  CAS  Google Scholar 

  21. Ceballos I, Agid F, Delacourte A et al. Parkinson’s disease and Alzheimer’s disease: neurodegenerative disorders due to brain antioxidant system defiencies? In: Emerit I, Packer L, Auclair C, eds. Antioxidant in Therapy and Preventive Medicine. Adv Exp Biol Med, Plenum Press 1990: 493–498.

    Google Scholar 

  22. Sinet PM, Ceballos-Picot I. Role of free radicals in Alzheimer’s disease and Down’s syndrome. In: Packer L, Prilipko L, Christen Y, eds. Free radicals in the brain. Adv Exp Biol Med. SpringerVerlag: New York, 1992; 91–98.

    Google Scholar 

  23. Volicer L, Crino PB. Involvement of free radicals in dementia of the Alzheimer’s type: a hypothesis. Neurobiol Aging 1990; 11: 567–571.

    PubMed  CAS  Google Scholar 

  24. Smith CD, Carney JM, Starke-Reed PE et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 1991; 88: 10540–10543.

    PubMed  CAS  Google Scholar 

  25. Behl C, Davis JB, Lesley R et al. Hydrogen peroxide mediates amyloid 3 protein cytotoxicity. Cell 1994; 77: 817–827.

    PubMed  CAS  Google Scholar 

  26. Yan SD, Chen X, Schmidt A-M et al. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 1994; 91: 7787–7791.

    PubMed  CAS  Google Scholar 

  27. Hensley K, Carney JM, Mattson MP et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 1994; 91: 3270–3274.

    PubMed  CAS  Google Scholar 

  28. Goate A, Chartier-Harlin MC, Mullan M et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991; 349: 704–7066.

    PubMed  CAS  Google Scholar 

  29. Hardy J. Framing β-amyloid. Nature Genet 1992; 1: 233–234.

    PubMed  CAS  Google Scholar 

  30. Games D, Adams D, Alessandrini R et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 1995; 373: 523–527.

    PubMed  CAS  Google Scholar 

  31. Yamatsuji T, Okamoto T, Takeda S et al. Expression of V642 APP mutant causes cellular apoptosis as Alzheimer trait-linked phenotype. EMBO J 1996; 15: 498–509.

    PubMed  CAS  Google Scholar 

  32. Citron M, Vigo PC, Teplow DB et al. Excessive production of amyloid 3-protein by peripheral cells of symptomatic patients carrying the Swedish familial Alzheimer’s disease mutation. Proc Natl Acad Sci USA 1994; 91: 11993–97.

    PubMed  CAS  Google Scholar 

  33. Cai X, Golde TE, Younkin SG. Release of excess amyloid 13 protein from a mutant amyloid 13 protein precursor. Science 1993; 259: 514–16.

    PubMed  CAS  Google Scholar 

  34. Haass C, Selkoe D. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 1994; 75: 1039–1042.

    Google Scholar 

  35. Martin BL, Schrader-Fisher G, Busciglio J et al. Intracellular accumulation of 3amyloid in cells expressing the Swedish mutant amyloid precursor protein. J Biol Chem 1995; 270: 26727–26730.

    PubMed  CAS  Google Scholar 

  36. Felsenstein KM, Hunihan LW, Roberts A. Altered cleavage and secretion of a recombinant β-APP bearing the Swedish familial Alzheimer’s mutation. Nature Genet 1994; 251–258.

    Google Scholar 

  37. Hsiao K, Chapman P, Nilsen S et al. Correlative memory deficits, AP elevation and amyloid plaques in transgenic mice. Science 1996; 274: 99–102.

    PubMed  CAS  Google Scholar 

  38. Van Broeckhoven C. Presenilins. Alzheimer’s disease. Nature Genet 1995; 11: 230–232.

    PubMed  Google Scholar 

  39. Levy-Lahad E, Wasco W, Poorkaj P et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269: 917–918.

    Google Scholar 

  40. Levitan D, Greenwald I. Facilitation of lin-12-mediated signaling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 1995; 377: 351–354.

    PubMed  CAS  Google Scholar 

  41. Artavanis-Tsanokas, Matsuno K, Fortini ME. Notch signaling. Science 1995; 268: 225–232.

    Google Scholar 

  42. Kovaks DM, Fausett HJ, Page KJ et al. Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 1996; 2: 224–229.

    Google Scholar 

  43. Scheuner D et al. Fibroblasts from carriers of familial AD linked to chromosome 14 show increased A13 production. Nat Med 1996; 2: 864–870.

    PubMed  CAS  Google Scholar 

  44. Rogaev EI et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995; 376: 775–778.

    PubMed  CAS  Google Scholar 

  45. Corder EH, Saunders A, Strittmatter W et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921–923.

    PubMed  CAS  Google Scholar 

  46. Chartier-Harlin MC, Parfitt M, Legrain S et al. Apolipoprotein E, e4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet 1994; 3: 579–574.

    Google Scholar 

  47. Strittmatter WJ, Weisgraber KH, Huang DY et al. Binding of human apolipoprotein E to synthetic amyloid 13 peptide: isoform specific effects and implications for late-onset Alzheimer’s disease. Proc Natl Acad Sci USA 1993; 90: 8098–8102.

    PubMed  CAS  Google Scholar 

  48. Jarvik GP, Larson EB, Goddard K et al. Influence of apolipoprotein E genotype on the transmission of Alzheimer disease in a community-based sample. Am J Hum genet 1996; 58: 191–200.

    PubMed  CAS  Google Scholar 

  49. Poirier J, Delisle MC, Quirion R et al. Apolipoprotein E-e4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 1995; 92: 12260–12264.

    PubMed  CAS  Google Scholar 

  50. Schâchter F, Faure-Delanef L, Guenot F et al. Genetic associations with human longevity at the ApoE and ACE loci. Nature Genet 1994; 6: 29–32.

    PubMed  Google Scholar 

  51. Richey PL, Siedlak SL, Smith MA et al. Apolipoprotein E interaction with the neurofibrillary tangles and senile plaques in Alzheimer disease: implications for disease pathogenesis. Biochem Biophys Res Comm 1995; 208: 657–663.

    PubMed  CAS  Google Scholar 

  52. Ma J, Yee A, Brewer HB et al. Amyloidassociated protein al-antichymotrypsine and apolipoprotein E promote assembly of Alzheimer 13-protein into filaments. Nature 1994; 372: 92–94.

    PubMed  CAS  Google Scholar 

  53. Sanan DA, Weisgraber KH, Russell SJ et al. Apolipoprotein E associates with ß amyloid peptide of Alzheimer’s disease to form novel monofibrils. J Clin Invest 1994; 94: 860–869.

    PubMed  CAS  Google Scholar 

  54. Wisniewski T, Goldabek AA, Kida E et al. Conformational mimicry in Alzhelmer’s disease: role of apolipoproteins in amyloidogenesis. Am J Pathol 1995; 147: 238–244.

    PubMed  CAS  Google Scholar 

  55. Strittmatter WJ, Saunders AM, Goedert M et al. Isoform specific interactions of apolipoprotein E with microtubule associated protein tau: implications for Alzheimer’s disease. Proc Natl Acad Sci USA 1994; 91: 11183–11186.

    PubMed  CAS  Google Scholar 

  56. Hayek T, Oikinine J, Brook JG et al. Increased plasma and lipoprotein lipoperoxidation in apolipoprotein E deficient mice. Biochem Biophys Res Comm 1994; 201: 1567–1574.

    PubMed  CAS  Google Scholar 

  57. Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides. Nature Genet 1996; 14: 55–61.

    PubMed  CAS  Google Scholar 

  58. Hutchin T, Cortopassi GA. A mitochondrial DNA clone is associated with increased risk for Alzheimer disease. Proc Natl Acad Sci USA 1993; 92: 6892–6895.

    Google Scholar 

  59. Shoffner JM, Brown MD, Torroni A et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease. Genomics 1993; 17: 171–184.

    PubMed  CAS  Google Scholar 

  60. Ganrot PO. Metabolism and possible health effects of aluminium. Environ Health Perspect 1986; 65: 363–441.

    PubMed  CAS  Google Scholar 

  61. Wenstrup D, Ehmann WD, Markesbery WR. Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Res 1990; 533: 125–131.

    PubMed  CAS  Google Scholar 

  62. Candy JM, Oakley AE, Watt F et al. A role for aluminium, silicon and iron in the genesis of senile plaques, in: Modern Trends In Aging Research. EURAGE, John Libbey 1986; 147: 443–450.

    Google Scholar 

  63. Wallwork JC. Zinc and the central nervous system. Prog Food Nutr Soc 1987; 11: 203–247.

    CAS  Google Scholar 

  64. Wenk GL, Stemmer KL. Suboptimal dietary zinc intake increases aluminium accumulation into the rat brain. Brain Res 1983; 288: 393–395.

    PubMed  CAS  Google Scholar 

  65. Markesbery WR, Ehmann WD. Brain trace metals in Alzheimer disease, in Alzheimer Disease In: Terry RD, Katzman R, Bick KL, eds. New York: Raven Press, 1994; 353–367.

    Google Scholar 

  66. Zaleska MM, Floyd RA. Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res 1985; 10: 397–410.

    PubMed  CAS  Google Scholar 

  67. Dyrks T, Dyrks E, Hartman T et al. Amyloidogenicity of 13A4 and ßA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol Chem 1992; 267: 18210–18217.

    PubMed  CAS  Google Scholar 

  68. Ehmann WD, Markesbery WR, Alauddin M et al. Brain trace elements in Alzheimer’s disease. Neurotoxicology 1986; 7: 197–206.

    CAS  Google Scholar 

  69. Grundke-Iqbal I, Fleming J, Tung YC et al. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol 1990; 81: 105–110.

    PubMed  CAS  Google Scholar 

  70. Mantyh PW, Ghilardi JR, Rogers S et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J Neurochem 1993; 61: 1171–1174.

    PubMed  CAS  Google Scholar 

  71. Evans PH, Klinowski J, Yano E et al. Alzheimer’s disease: a pathogenic role for aluminosilicate-induced phagocytic free radicals. Free Rad Res Comms 1989; 6: 317–321.

    CAS  Google Scholar 

  72. Evans PH, Peterhans E, Burge T et al. Aluminosilicate-induced free radical generation by murine brain glial cells in vitro: potential significance in the aetiopathogenesis of Alzheimer’s dementia. Dementia 1992; 3: 1–6.

    Google Scholar 

  73. Fraga CG, Oteiza PI, Golub MS et al. Effects of aluminum on brain lipid peroxidation. Toxicol Lett 1990; 51: 213–219.

    PubMed  CAS  Google Scholar 

  74. Subbarao KV, Richardson JS, Ang L. Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J Neurochem 1990; 55: 342–345.

    PubMed  CAS  Google Scholar 

  75. Palmer AM, Burns MA. Selective increase in lipid peroxidation in the inferior cerebral cortex in Alzheimer’s disease. Brain Res 1994; 645: 338–342.

    PubMed  CAS  Google Scholar 

  76. Smith MA, Rudnicka-Nawrot M, Richey PL et al. Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 1995; 64: 2660–2666.

    PubMed  CAS  Google Scholar 

  77. Mecocci P, Mc Garvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994; 36: 747–750.

    PubMed  CAS  Google Scholar 

  78. Meccocci P, MacGarvey U, Kaufman AE et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993; 34: 609–616.

    Google Scholar 

  79. Smith MA, Taneda S, Richey PL et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 1994; 91: 5710–5714.

    PubMed  CAS  Google Scholar 

  80. Chweers O, Mandelkow EM, Biernat J et al. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci USA 1995; 92: 8463–8467.

    Google Scholar 

  81. Gabuzda D, Busciglio J, Chen LB. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 1994; 269: 13623–13628.

    PubMed  CAS  Google Scholar 

  82. Vitek MP, Bhattacharya K, Glendening JM et al. Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc Natl Acad Sci USA 1994; 91: 4766–4770.

    PubMed  CAS  Google Scholar 

  83. Behl C, Davis J, Cole G, Schubert D. Vitamin E protects nerve cells from amyloid 13 protein toxicity. Biochem Biophys Res Commun 1992; 186: 944–950.

    PubMed  CAS  Google Scholar 

  84. Butterfield DA. A model for ß-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc Natl Acad Sci USA 1994; 91: 3270–3274.

    PubMed  Google Scholar 

  85. Goodman Y, Mattson MP. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp Neurol 1994; 128: 1–12.

    PubMed  CAS  Google Scholar 

  86. Hensley K, Hall N, Subramaniam R et al. Brain regional correspondance between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65: 2146–2156.

    PubMed  CAS  Google Scholar 

  87. Mattson MP, Cheng B, Davis D et al. β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12: 376–389.

    PubMed  CAS  Google Scholar 

  88. Schreck R, Baeuerle PA. A role of oxygen radicals as second messengers. Trends Biochem 1991; 1: 39–42.

    CAS  Google Scholar 

  89. Ceballos I, Javoy-Agid F, Hirsch EC et al. Localization of copper-zinc superoxide dismutase mRNA in human hippocampus by in situ hybridization. Neurosci Lett 1989; 105: 41–46.

    PubMed  CAS  Google Scholar 

  90. Delacourte A, Defossez A, Ceballos I et al. Preferential expression of copper-zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer’s disease. Neurosci Lett 1988; 92: 247–253.

    PubMed  CAS  Google Scholar 

  91. Pappolla MA, Omar RA, Kim KS et al. Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease. Am J Pathol 1992; 140: 621–628.

    PubMed  CAS  Google Scholar 

  92. Smith MA, Kutty RK, Richey PL et al. Herne oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 1994; 145: 42–47.

    PubMed  CAS  Google Scholar 

  93. Furuta A, Price DL, Pardo CA et al. Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am J Pathol 1995; 146: 357–367.

    PubMed  CAS  Google Scholar 

  94. Premkumar DRD, Smith MA, Richey PL et al. Induction of heme oxygenase-1 mRNA and protein inneocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 1995; 65: 1399–1402.

    PubMed  CAS  Google Scholar 

  95. Smith MA, Taneda S, Richey PL et al. Advanced Maillard reaction end products are associated with Alzheimer’s disease pathology. Proc Natl Acad Sci USA 1994; 91: 5710–5714.

    PubMed  CAS  Google Scholar 

  96. Carney JM, Starke-Reed PE, Oliver CN et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound Ntert-butyl-a-phenylnitrone. Proc Natl Acad Sci USA 1991; 88: 3633–363.

    PubMed  CAS  Google Scholar 

  97. Oliver CN, Ahn BW, Moerman EJ et al. Age-related changes in oxidized proteins. J Biol Chem 1987; 262: 5488–5491.

    PubMed  CAS  Google Scholar 

  98. Smith CD, Carney JM, Tatsumo T, Stadtman ER, Floyd RA, Markesbery WR: Protein oxidation in aging brain. Ann NY Acad Sci 1992; 663: 110–119.

    PubMed  CAS  Google Scholar 

  99. Stadtman ER. Protein oxidation and aging. Science 1992; 257: 1220–1224.

    PubMed  CAS  Google Scholar 

  100. Harris ME, Hensley K, Butterfield DA et al. Direct evidence of oxidative injury by the Alzheimer’s amyloid 13 peptide in cultured hippocampal neurons. Exp Neurol 1995; 131: 193–202.

    PubMed  CAS  Google Scholar 

  101. Hensley K, Aksenova M, Carney JM et al. Amyloid β-peptide spin trapping I: peptide enzyme toxicity is related to free radical spin trap reactivity. Neuroreport 1995; 6: 489–492.

    PubMed  CAS  Google Scholar 

  102. Mc Geer PL, Itagaki S, Boyes BE et al. Reactive microglia are positive for HLADR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38: 1285–91.

    Google Scholar 

  103. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989; 24: 173–182.

    PubMed  CAS  Google Scholar 

  104. Perlmutter LS, Barron E, Chui HC. Morphologic association between micro-glia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett 1990; 119: 32–36.

    PubMed  CAS  Google Scholar 

  105. Selkoe DJ. Alzheimer’s disease: genotypes, phenotype, and treatments. Science 1997; 275: 630–631.

    PubMed  CAS  Google Scholar 

  106. Dickson DW, Lee SC, Mattiace LA et al. Microglia and cytokines in neurological disease and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 1993; 7: 75–83.

    PubMed  CAS  Google Scholar 

  107. Wegiel J, Wisniewski HM. The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol 1990; 81: 116–24.

    PubMed  CAS  Google Scholar 

  108. Colton CA, Snell J, Chernyshev O et al. Induction of superoxide anion and nitric oxide production in cultured microglia. Ann NY Acad Sci 1994; 738: 54–63.

    PubMed  CAS  Google Scholar 

  109. Elkabes S, DiCicco-Bloom E, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996; 16: 2508–21.

    PubMed  CAS  Google Scholar 

  110. Shaffer LM, Dority MD, Gupta-Bansal R et al. Amyloid β protein (Aβ) removal by neuroglial cells in culture. Neurobiol Aging 1995; 16: 737–45.

    PubMed  CAS  Google Scholar 

  111. Klegeris A, Walker DG, McGeer PL. Activation of macrophages by Alzheimer beta amyloid peptide. Biochem Biophys Res Commun 1994; 199: 984–991.

    PubMed  CAS  Google Scholar 

  112. Meda L, Cassatella MA, Szendrei GI et al. Activation of microglial cells by β-amyloid protein and interferon-y. Nature 1995; 374: 647–50.

    PubMed  CAS  Google Scholar 

  113. Marklund SL, Adolfsson R, Gottfries CG et al. Superoxide dismutase isoenzymes in normal brains from patients with dementia of Alzheimer type. J Neurol Sci 1985; 67: 319–325.

    PubMed  CAS  Google Scholar 

  114. Markesbery WR, Lovell MA, Ehmann WD. Increased lipid peroxidation and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurobiol Aging 1994; 15: S139 - S140.

    Google Scholar 

  115. Balazs L, Leon M. Evidence for an oxidative challenge in the Alzheimer’s brain. Neurochem Res 1994; 19: 1131–1137.

    PubMed  CAS  Google Scholar 

  116. Chen L, Richardson JS, Caldwell JE, Ang LC. Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer’s disease and from nondemented controls. Int J Neurosci 1994; 75: 83–90.

    PubMed  CAS  Google Scholar 

  117. Gsell W, Conrad R, Hickethier M et al. Decreased catalase activity but unchanged superoxide dismutase activity. J Neurochem 1995; 64: 1216–1223.

    PubMed  CAS  Google Scholar 

  118. Martins RN, Harper CG, Stokes GB et al. Increased glucose 6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress. J Neurochem 1986; 46: 1042–1045.

    PubMed  CAS  Google Scholar 

  119. Ceballos I, Agid F, Delacourte A. Neuronal localization of CuZnSOD protein and mRNA within the human hippocampus from control and Alzheimer’s disease brains. Free Rad Res Comms 1991; 12–13: 581–589.

    Google Scholar 

  120. Goedert M. Neuronal localization of amyloid protein precursor mRNA in normal human brain and in Alzheimer’s disease. EMBO J 1987; 6: 3627–3632.

    PubMed  CAS  Google Scholar 

  121. Ceballos-Picot I, Merad-Boudia M, Nicole A et al. Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of the Alzheimer-type: place of the extracellular glutathione peroxidase. Free Rad Biol Med 1996; 20: 579–587.

    PubMed  CAS  Google Scholar 

  122. Sulkawa R, Nordberg UR, Erkinjuntti T et al. Erythrocyte glutathione peroxidase and superoxide dismutase in Alzheimer’s disease and other dementia. Acta Neurol Scand 1986; 73: 487–489.

    Google Scholar 

  123. Jeandel C, Nicolas MB, Dubois F et al. Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 1989; 35: 275–282.

    PubMed  CAS  Google Scholar 

  124. Zubenko GS, Sauer P. SOD-1 activity and platelet membrane fluidity in Alzheimer’s disease. Biol Psychiatry 1989; 25: 671–678.

    PubMed  CAS  Google Scholar 

  125. de Lustig E, Serra JA, Kohan S et al. Copper-zinc superoxide dismutase activity in red blood cells and serum in demented patients. J Neurol Sci 1989; 115: 18–25.

    Google Scholar 

  126. Serra JA, Famulari AL, Kohan S et al. Copper-zinc superoxide dismutase activity in red blood cells in probable Alzheimer’s patient and their first-degree relatives. J Neurol Sci 1994; 122, 179–188.

    PubMed  CAS  Google Scholar 

  127. Percy ME, Dalton AJ, Markovic VD. Red cell superoxide dismutase, glutathione peroxidase and catalase in Down syndrome patients with and without manifestations of Alzheimer disease. Am J Med Genet 1990; 35: 459–467.

    PubMed  CAS  Google Scholar 

  128. Perrin R, Briancon S, Jeandel C. Blood activity of CuZn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease. A case-control study. Gerontology 1990; 36: 306–313.

    PubMed  CAS  Google Scholar 

  129. Fernandes MAS, Santana I, Januario C et al. Decreased superoxide dismutase activity in erythrocytes from patients with Alzheimer’s disease. Med Sci Res 1993; 21: 679–682.

    CAS  Google Scholar 

  130. Anneren G, Gardner A, Lundin T. Increased glutathione peroxidase activity in erythrocytes in patients with Alzheimer’s disease/senile dementia of the Alzheimer type. Acta Neurol Scand 1986; 73: 586–589.

    PubMed  CAS  Google Scholar 

  131. Basun H, Forssell LG, Wetterberg L et al. Metals and trace elements in plasma and cerebrospinal fluid in normal ageing and in Alzheiemer’s disease. J Neural Trans 1991; 4: 231–258.

    Google Scholar 

  132. Zubenko GS, Cohen BM, Boller F et al. Platelet membrane abnormality in Alzheimer’s disease. Ann Neurol 1987; 22: 237–244.

    PubMed  CAS  Google Scholar 

  133. Hajjimohammadreza I, Brammer M. Brain membrane fluidity and lipid peroxidation in Alzheimer’s disease. Neurosci lett 1990; 112: 333–337

    Google Scholar 

  134. Avissar N, Ornt DB, Yagil Y et al. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 1994; 266: C367–375.

    PubMed  CAS  Google Scholar 

  135. Amstad P, Moret R, Cerutti P. Glutathione peroxidase compensates for the hypersensitivity of CuZn-superoxide dismutase overproducers to oxidant stress. J Biol Chem 1994; 269: 1606–1609.

    PubMed  CAS  Google Scholar 

  136. Ceballos I, Delabar JM, Nicole A et al. Expression of transfected human CuZnSOD in mouse L cells and NS20Y neuroblastoma cells induces enhancement of glutathione peroxidase activity. Biochim Biophys Acta 1988; 949, 58–64.

    PubMed  CAS  Google Scholar 

  137. Toussaint O, Houbion A, Remade J. Relationship between the critical level of oxidative stresses and the glutathione peroxidase activity. Toxicology 1993; 81: 89–101.

    PubMed  CAS  Google Scholar 

  138. Berr C, Nicole A, Godin J, Ceballos-Picot I et al. Selenium and oxygen metabolizing enzymes in elderly community residents: a pilot epidemiological study. J Am Geriatr Soc 1993; 41: 143–148.

    PubMed  CAS  Google Scholar 

  139. Bunker VW, Lawson MS, Stansfield MF et al. Selenium balance studies in apparently healthy and housebound elderly people eating self-selected diets. Br J Nutr 1988; 59: 171–180.

    PubMed  CAS  Google Scholar 

  140. Lloyd B, Lloyd RS, Clayton BE. Effect of smoking, alcohol, and other factors on the selenium status of a healthy population. J Epidemiol Coll Health 1983; 37: 213–217.

    CAS  Google Scholar 

  141. Neve J. Physiological and nutritionnal importance of selenium. Experientia 1991; 47: 187–193.

    PubMed  CAS  Google Scholar 

  142. Selkoe DJ. Cell biology of the amyloid protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 1994; 10: 373–403.

    PubMed  CAS  Google Scholar 

  143. Zheng H, Jiang M, Trumbauer ME et al. β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995; 81: 525–531.

    PubMed  CAS  Google Scholar 

  144. Van Nostrand WE, Wagner SL, Suzuki M et al. Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid β-protein precursor. Nature 1989; 341: 546.

    PubMed  Google Scholar 

  145. Mattson MP, Cheng B, Smith-Swintosky VL. Mechanisms of neurotrophic factors protection against calcium-and free radical-mediated injury: implications for treating neurodegenerative disorders. Exp Neurol 1993; 124: 89–95.

    PubMed  CAS  Google Scholar 

  146. Mucke L, Abraham CR, Masliah E. Neurotrophic and neuroprotective effects of hAPP in transgenic mice. Ann NY Acad Sci 1996; 777: 82–88.

    PubMed  CAS  Google Scholar 

  147. Citron M, Olterstorf T, Haas C et al. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 1992; 360: 67–674.

    Google Scholar 

  148. Kounnas MZ, Moir RD, Rebeck GW et al. LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 1995; 82: 331–340.

    PubMed  CAS  Google Scholar 

  149. Bush AI. Multhaup G, Moir RD et al. A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem 1993; 268: 16109–16112.

    PubMed  CAS  Google Scholar 

  150. Hesse L, Beher D, Masters CL et al. The beta A4 amyloid precursor protein binding to copper. FEBS Lett 1994; 349: 109–116.

    PubMed  CAS  Google Scholar 

  151. Yamazaki T, Selkoe DJ, Koo EH. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons. J Cell Biol 1995; 129: 431–442.

    PubMed  CAS  Google Scholar 

  152. Cork C, Masters K, Beyreuther K et al. Development of senile plaques. Relationships of neuronal abnormalities and amyloid deposits. Am J Pathol 1990; 137: 1383–1392.

    PubMed  CAS  Google Scholar 

  153. Multhaup G, Schlicksupp A, Hesse L et al. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper (I). Science 1996, 271: 1406–1409.

    PubMed  CAS  Google Scholar 

  154. Wong PC, Pardo, CA, Borchelt DR et al. An adverse property of a familial ALS-linked SOD-1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105–1116.

    PubMed  CAS  Google Scholar 

  155. Fitzgerald DJ. Zinc and Alzheimer’s disease. Science 1995; 268: 1920.

    PubMed  CAS  Google Scholar 

  156. Yoshikawa K, Aizawa T, Hayashi Y. Degeneration in vitro of post-mitotic neurons overexpressing the Alzheimer amyloid protein. Nature 1992; 359: 64–67.

    PubMed  CAS  Google Scholar 

  157. Rumble B, Retallack R, Hilbich C et al. Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 1989; 320: 1446–1452.

    PubMed  CAS  Google Scholar 

  158. Lee RKK, Wurtman RJ, Cox AJ, Nitsch RM. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA1995; 92: 8083–8087.

    Google Scholar 

  159. Copani A, Bruno V, Vaughan PJ. Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by fl-amyloid peptide. Mol Pharmacol 1995; 47: 890–897.

    PubMed  CAS  Google Scholar 

  160. Trejo J, Massamiri T, Deng T et al. A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of Alzheimer’s beta amyloid precursor protein gene. J Biol Chem 1994; 269: 21682–21690.

    PubMed  CAS  Google Scholar 

  161. Dewji NN, Do C, Bayney RM. Transcriptional activation of Alzheimer’s beta amyloid precursor protein gene by stress. Mol Brain Res 1995; 33: 245–253.

    PubMed  CAS  Google Scholar 

  162. Dewji NN, Do C. Heat shock factor-1 mediates the transcriptional activation of Alzheimer’s β-amyloid precursor protein gene in response to stress. Mol Brain Res 1996; 35: 325–328.

    PubMed  CAS  Google Scholar 

  163. Stein-Behrens B, Mttson MP, Chang I et al. Stress-exacerbated neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 1994: 5373–5380.

    Google Scholar 

  164. Araujo DM and Cotman CW. β-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 1992; 569: 141–45.

    PubMed  CAS  Google Scholar 

  165. Beal MF. Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38: 357–366.

    PubMed  CAS  Google Scholar 

  166. Askanas V, McFerrin J, Baqué S et al. Transfer of β-amyloid precursor protein using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Proc Natl Acad Sci USA 1996; 93: 1314–1319

    PubMed  CAS  Google Scholar 

  167. Mutisya EM, Bowling AC, Beal MF. Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 1994; 63: 2179–2184.

    PubMed  CAS  Google Scholar 

  168. Corral-Debrinski M, Horton T, Lott MT et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet, 1992; 2: 324–329.

    PubMed  CAS  Google Scholar 

  169. Blass JP, Baker AC, Ko LW et al. Induction of Alzheimer antigens by an un-coupler of oxidative phosphorylation. Arch Neurol 1990; 47: 864–869.

    PubMed  CAS  Google Scholar 

  170. Sandhu FA, Kim Y, Lapan KA et al. Expression of the C terminus of the amyloid precursor protein alters growth factor responsiveness in stably transfected PC12 cells. Proc Natl Acad Sci USA 1996; 93: 2180–2185.

    PubMed  CAS  Google Scholar 

  171. Kawabata S, Higgind GA, Gordon JW. Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 1991; 354: 476–478.

    PubMed  CAS  Google Scholar 

  172. Moran PM, higgins LS, Cordell B, Moser PC. Age-related learning deficits in trans-genic mice expressing the 751-amino acid isoform of human β-amyloid precursor protein. Proc Natl Acad Sci USA 1995; 92: 5341–5345.

    PubMed  CAS  Google Scholar 

  173. Laferla FM, Tinkle BT, Bieberich CJ et al. The Alzheimer’s AI peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genet 1995; 9: 215–220.

    Google Scholar 

  174. Smith MA, Sayre LM, Monnier VM et al. Radical AGEing in Alzheimer’s disease. Trends Neurosci 1995; 18, 172–176.

    PubMed  CAS  Google Scholar 

  175. Smith MA, Sayre LM, Vitek MP et al. Early AGEing and Alzheimer’s. Nature 1995; 374: 316.

    PubMed  CAS  Google Scholar 

  176. Sell DR, Monnier VM. Structure elucidation of a senescence crosslink from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 1989; 264: 21597–21602.

    PubMed  CAS  Google Scholar 

  177. Ledesma MD, Bonay P, Colaco C et al. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 1994; 269: 21614–21619.

    PubMed  CAS  Google Scholar 

  178. Yan SD, Yan SF, Chen Xi et al. Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide. Nature Med 1995; 1: 693–699.

    PubMed  CAS  Google Scholar 

  179. Gustke N, Steiner B, Mandelkow E et al.The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 1992; 307: 199–205.

    PubMed  CAS  Google Scholar 

  180. Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 1984; 259: 5301–5305.

    PubMed  CAS  Google Scholar 

  181. Perry G. Neuritic plaques in Alzheimer disease orginate from neurofibrillary tangles. Med Hypotheses 1993; 40: 257–258.

    PubMed  CAS  Google Scholar 

  182. Connolly JA, Kalnins VI, Cleveland D. Immunofluorescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci USA 1977; 74: 2437–2440.

    PubMed  CAS  Google Scholar 

  183. Seldon SC, Pollard TD. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem 1983; 258: 7064–7071.

    Google Scholar 

  184. Miyata Y, Hoshi M, Nishida E et al. Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70 kDa subunit protein. J Biol Chem 1986; 261: 13026–13030.

    PubMed  CAS  Google Scholar 

  185. Smith MA, Siedlak SL, Richey PL et al. Tau protein directly interacts with the amyloid protein precursor: Implications for Alzheimer’s disease. Nat Med 1995; 1: 365–369.

    PubMed  CAS  Google Scholar 

  186. Quefurth HW, Wijsman EM, St. George-Hyslop PH et al. 13 APP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer’s disease-1 family. Mol Brain Res 1995; 28: 319–37.

    Google Scholar 

  187. Iversen LL, Mortishire-Smith RJ, Pollack SJ et al. The toxicity in vitro of β-amyloid protein. Biochem J 1995; 311: 1–16.

    PubMed  CAS  Google Scholar 

  188. Pike CJ, Burdick D, Walencewicz AJ et al. Neurodegenration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993; 13: 1676–1687.

    PubMed  CAS  Google Scholar 

  189. Hensley K, Aksenova M, Carney JM et al. Amyloid β-peptide spin trapping II: evidence for the decomposition of the PBN spin adduct. Neuroreport 1995; 6: 493–496.

    PubMed  CAS  Google Scholar 

  190. Bush AI, Pettingell WH, Multhaup G et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 1994; 265: 1464–1467.

    PubMed  CAS  Google Scholar 

  191. Paresce DM, Ghosh RN, Maxfield FR et al. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid 3-protein via a scavenger receptor. Neuron 1996; 17: 553–565.

    PubMed  CAS  Google Scholar 

  192. El Khoury J, Hickman SE, Thomas CA et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 1996; 382: 716–719.

    PubMed  Google Scholar 

  193. Shaffer LM, Dority MD, Gupta-Bansal R et al. Amyloid 3-protein removal by neuroglial cells in culture. Neurobiol Aging 1995; 16: 737–745.

    PubMed  CAS  Google Scholar 

  194. Christie RH, Freeman M, Hyman BT. Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease. Am J Pathol 1996; 148: 399–403.

    PubMed  CAS  Google Scholar 

  195. Yan SD, Chen Xi, Fu J et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382: 685–691.

    PubMed  CAS  Google Scholar 

  196. Zhang Z, Rydel RE, Drzeewiecki GJ et al. Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation. J Neurochem 1996; 67: 1595–1606.

    PubMed  CAS  Google Scholar 

  197. Goodman Y, Steiner MR, Steiner SM et al. Nordihydroguaiaretic acid protects hippocampal neurons against amyloid peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res 1994; 654: 171–176.

    PubMed  CAS  Google Scholar 

  198. Schubert D, Behl C, Lesley R, Brack A et al. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci USA 1995; 92: 1989–1993.

    PubMed  CAS  Google Scholar 

  199. Bruce AJ, Malfroy B, Baudry M. β-amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Proc Natl Acad Sci USA 1996; 93: 2312–2316.

    PubMed  CAS  Google Scholar 

  200. Sagara Y, Dargush R, Klier FG et al. Increased antioxidant enzyme activity in amyloid 13 protein-resistant cells. J Neurosci 1996; 16: 497–505.

    PubMed  CAS  Google Scholar 

  201. Itagaki S, Mc Geer PL, Akiyama et al. relationship of microglia and astrocytes to amyloid deposits of Alzheimer’s disease. J Neuroimmunol 1989; 24: 173–182.

    PubMed  CAS  Google Scholar 

  202. Merril JE, Ignarro LJ, Sherman MP et al. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 1993; 151: 2132–2141.

    Google Scholar 

  203. Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal death. Brain Res 1992; 587: 250–256.

    PubMed  CAS  Google Scholar 

  204. Eikelenboom P, Zhan SS, Van Gool WA et al. Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol Sci 1994; 15: 447–450.

    PubMed  CAS  Google Scholar 

  205. Le W-D, Colom LV, Xie W-J et al. Cell death induced by β-amyloid 1–40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 1995; 686: 49–60.

    PubMed  CAS  Google Scholar 

  206. Hu J, El-Fakahany EE. β-amyloid 25–35 activates nitric oxide synthase in neuronal clone. Neuroreport 1993; 4: 760–762.

    PubMed  CAS  Google Scholar 

  207. Ii M, Sunamoto M, Ohnishi K, Ichimori Y. β-amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res 1996; 720: 93–100.

    PubMed  CAS  Google Scholar 

  208. Araujo DM, Cotman CW. β-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 1992; 569: 141–145.

    PubMed  CAS  Google Scholar 

  209. Walker DG, Kim SU, Mc Geer PL. Complement and cytokine gene expression in cultured microglia derived from post-mortem human brains. J Neurosci Res 1995; 40: 478–493.

    PubMed  CAS  Google Scholar 

  210. Gitter BD, Cox LM, Rydel RE et al. Amyloid β peptide potentiates cytokine secretion by interleukin-113-activated human astrocytoma cells. Proc Natl Acad Sci USA 1995; 92: 10738–10741.

    PubMed  CAS  Google Scholar 

  211. Barger SW, Hörster D, Furukawa K et al. Tumor necrosis factors a and β protect neurons against amyloid β-peptide toxicity: Evidence for involvement of a xBbinding factor and attenuation of peroxide and Ca“ accumulation. Proc Natl Acad Sci USA 1995; 92: 9328–9332.

    PubMed  CAS  Google Scholar 

  212. Butterfield DA, Hensley K, Harris M et al. β-amyloid peptide free radical fragments initiate synaptosomal peroxidation in a sequence-specific fashion; implications to Alzheimer’s disease. Biochem Biophys Res Commun 1994; 200: 710–715.

    PubMed  CAS  Google Scholar 

  213. Goodman Y, Mattson MP. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid peptide-induced oxidative injury. Exp Neurol 1994; 128: 1–12.

    PubMed  CAS  Google Scholar 

  214. Goodman Y, Mattson MP. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity. J Neurochem 1996; 66: 869–872.

    PubMed  CAS  Google Scholar 

  215. Mark RJ, Lowell MA, Markesbery WR et al. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid 13 peptide. J Neurochem 1997; 68: 255–264.

    PubMed  CAS  Google Scholar 

  216. Hartley DP, Ruth JA, Petersen DR. The hepatocellular metabolism of 4-hydroxynonenal by alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione S-transferase. Arch Biochem Biophys 1995; 316: 197–205.

    PubMed  CAS  Google Scholar 

  217. Montine TJ, Amaranth V, Martin ME et al. 4-hydroxynonenal is cytotoxic and crosslinks cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol 1996; 148: 89–93.

    PubMed  CAS  Google Scholar 

  218. Mattson MP, Tomaselli K, Rydell RE. Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res 1993; 621: 35–49.

    PubMed  CAS  Google Scholar 

  219. Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid 3 protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Proc Natl Acad Sci USA 1993; 90: 567–571.

    PubMed  CAS  Google Scholar 

  220. Mattson MP, Goodman Y. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving free radicals and calcium. Brain Res 1995; 676: 219–224.

    PubMed  CAS  Google Scholar 

  221. Mattson MP, Cheng B, Davis D et al. β-amyloid peptides destabilize calcium homeostais and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12: 379–389.

    Google Scholar 

  222. Zhou Y, Gopalakrishnan V, Richardson JS. Actions of neurotoxic β-amyloid on calcium homeostasis and viability of PC12 cells are blocked by antioxidants but not by calcium channel antagonists. J Neurochem 1996; 67: 1419–1425.

    PubMed  CAS  Google Scholar 

  223. Furukawa K, Abe Y, Akaike N. Amyloid β protein-induced irreversible inward current in rat cortical neurons. Neuroreport 1994; 5: 2016–2018.

    PubMed  CAS  Google Scholar 

  224. Mark RJ, Hensley K, Butterfield DA et al. Amyloid β-peptide impairs ions-motive ATPase activities: evidence for a role in loss of neuronal Ca“ homeostasis and cell death. J Neurosci 1995; 15: 6239–6249.

    PubMed  CAS  Google Scholar 

  225. Harris ME, Carney JM, Cole PS et al. β-amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer’s disease. Neuroreport 1995; 6: 1875–1879.

    PubMed  CAS  Google Scholar 

  226. Lafon-Cazal M, Pietri S, Culcazi M et al. NMDA-dependent superoxide production and neurotoxicity. Nature 1993; 364: 535–537.

    PubMed  CAS  Google Scholar 

  227. Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and calcium influx in cultured hippocampal neurons. Neuron 1990; 4: 105–117.

    PubMed  CAS  Google Scholar 

  228. Mattson MP, Barger SW, Cheng B et al. β-amyloid precursor protein metabolites and loss of neuronal Ca“ homeostasis in Alzheimer’s disease. Trends Neurosci 1993; 16: 409–415.

    PubMed  CAS  Google Scholar 

  229. Mattson MP. Free radicals and disruption of neuronal ion homeostasis in AD: a role for amyloid β-peptide. Neurobiol Aging 1995; 16: 679–682.

    PubMed  CAS  Google Scholar 

  230. Schearman MS, Ragan CI, Iversen LI. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism β-amyloid -mediated cell death. Proc Natl Acad Sci USA 1994; 91: 1470–1474.

    Google Scholar 

  231. Loo D, Copani A, Pike CJ et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 1993; 90: 7951–7955.

    PubMed  CAS  Google Scholar 

  232. Schearman MS, Hawtin SR, Tailor VJ. The intracellular component of cellular 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. J Neurochem 1995; 68: 218–227.

    Google Scholar 

  233. Slater TF, Sawyer B, Sträubli U. Studies on succinate tetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 1963; 77: 383–393.

    PubMed  CAS  Google Scholar 

  234. Berridge MV, Tan AN. Characterization of the cellular reduction of cellular 3-(4,5-dimethylthiazol-2-y1)-2,5-diphen-yltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993; 303: 474–482.

    PubMed  CAS  Google Scholar 

  235. Hawtin SR, Dobbins AC, Tailoer VJ et al. Beta-amyloid inhibition of MTT reduction is not mimicked by inhibitors of mitochondrial respiration. Biochem Soc Trans 1995; 23: 56S.

    Google Scholar 

  236. Burdon RH, Gill V, Rice Evans C. Reduction of a tetrazolium salt and superoxide generation in human tumor cells (Hela). Free Rad Res Comms 1993; 18: 369–380.

    CAS  Google Scholar 

  237. Thomas T, Thomas G, McLendon C et al. β-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996; 380: 168–171.

    PubMed  CAS  Google Scholar 

  238. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 43: 109–142.

    PubMed  CAS  Google Scholar 

  239. Stamler JS. A radical vascular connection Nature 1996, 380: 108–111.

    CAS  Google Scholar 

  240. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936.

    PubMed  CAS  Google Scholar 

  241. Schreck R, Rieber P, Bauerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of NF-KB transcription factor and HIV-1. EMBO J 1991; 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  242. Grilli M, Pizzi M, Memo M et al. Neuro-protection by aspirin and sodium salycylate through blockade of NF-1β activation. Science 1996; 274: 1383–1385.

    PubMed  CAS  Google Scholar 

  243. Goodman Y, Mattson MP. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity. J Neurochem 1996; 66: 869–872.

    PubMed  CAS  Google Scholar 

  244. Forloni G, Chiesa R, Smiroldo S et al. Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25–35. Neuroreport 1993, 4: 523–526.

    PubMed  CAS  Google Scholar 

  245. Loo DT, Copani AG, Pike CJ et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 1993; 90: 79517955.

    Google Scholar 

  246. Su JH, Anderson AJ, Cummings BJ, Cotman CW. Immunohistochemical evidence for DNA fragmentation in neurons in the AD brain. Neuroreport 1994; 5: 529–2533.

    Google Scholar 

  247. Cotman CW, Anderson AJ. A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol 1995; 10: 1–19

    Google Scholar 

  248. Anderson AJ, Cummings BJ, Cotman CW. Increased immunoreactivity for Jun-and Fos-related proteins in Alzheimer’s disease: association with pathology. Exp. Neurol. 1994; 125: 286–295.

    PubMed  CAS  Google Scholar 

  249. Anderson AJ, Pike C, Cotman CW. Differential induction of immediate early gene proteins in cultured neurons by β-amyloid AN: association of c-jun with Aβ-induced apoptosis. J Neurochem 1995; 65: 1487–1498.

    PubMed  CAS  Google Scholar 

  250. Anderson AJ, Su JH, Cotman CW. DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 1996; 16: 1710–1719.

    PubMed  CAS  Google Scholar 

  251. Gillardon F, Skutella T, Uhlmann E, Holsboer F, Zimmermann M, Behl C. Activation of c-fos contributes to amyloid β-peptide-induced neurotoxicity. Brain Res 1996; 706: 169–172.

    PubMed  CAS  Google Scholar 

  252. Estus S, Zaks WJ, Freeman RS et al. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 1994; 127: 1717–1727.

    PubMed  CAS  Google Scholar 

  253. Ham J, Babij C, Whitfield J et al. A cjun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 1995; 14: 927–939.

    PubMed  CAS  Google Scholar 

  254. Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer’s disease. Ann NY Acad Sci 1993; 695: 34–41.

    PubMed  CAS  Google Scholar 

  255. Zhang C, Qiu HE, Krafft GA et al. Protein kinase C and F-actin are essential for stimulation of neuronal FAK tyrosine phosphorylation by G-proteins and amyloid β-peptide. FEBS Lett 1996; 386: 185–188.

    PubMed  CAS  Google Scholar 

  256. Crawford D, Zbinden I, Amstad P, Cerutti P. Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 1988; 3: 27–32.

    CAS  Google Scholar 

  257. Morgan JI, Curran T. Stimulus transcription coupling in the nervous system: involvement of the inducible protooncogenes fos and jun. Annu Rev Neurosci 1991; 14: 421–451.

    PubMed  CAS  Google Scholar 

  258. Satou T, Cummings BJ, Cotman CW. Immunoreactivity for bc1–2 protein within neurons in the Alzheimer’s disease brain increases with disease severity. Brain Res 1995; 697: 35–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceballos-Picot, I. (1997). Oxidative Stress in Alzheimer’s Disease. In: The Role of Oxidative Stress in Neuronal Death. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22516-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22516-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22518-9

  • Online ISBN: 978-3-662-22516-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics