Skip to main content

Cellular Structures and Nucleocytoplasmic Transport

  • Chapter
The Meaning of Nucleocytoplasmic Transport

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 81 Accesses

Abstract

‘Well-characterized’ has no precise or stable agreed denotation; its semantic content, if any, derives from context. Generally it carries the connotation that good science has been done and progress has been made. Conversely, ‘X is poorly-characterized’ implies that our knowledge does not provide an adequate basis for claims that might be advanced about X; it usually heralds a skeptical assessment of someone else’s work. Sometimes these phrases are used emotively, serving only laudatory or pejorative functions. So much for precision; the point about stability is even more obvious. In the 1950s an enzyme was well-characterized if it had been purified biochemically and its kinetic properties and inhibitor sensitivities had been quantified; nowadays, sequence data, three-dimensional structure, active site chemistry and regulation of expression seem to be minimal requirements and kinetic information is of secondary interest. A method is well-characterized if it yields results that are judged reproducible, valid and interpretable; but as new methods supersede old, presumably a once-accepted procedure becomes at least relatively ill-characterized. Fashions in scientific method come and go, and as we have already seen this makes it dangerously tempting to dismiss work based on ‘outdated’ methods. Perhaps it is worth recalling that modern astronomers do not disregard Kepler, Herschel or Hubble merely because techniques have improved since then.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Needham J. Biochemistry and Morphology. Cambridge: Cambridge University Press, 1934.

    Google Scholar 

  2. Amos LA, Baker TS. The three-dimensional structure of tubulin protofilaments. Nature 1979; 279: 607–612.

    PubMed  CAS  Google Scholar 

  3. Amos LA. Structure of muscle filaments studied by electron microscopy. Ann Rev Biophys Chem 1985; 14: 291–313.

    CAS  Google Scholar 

  4. Clark WE. The tissues of the body. 6th ed. Oxford: Clarendon Press, 1971.

    Google Scholar 

  5. Siegel B, ed. Physical aspects of electron microscopy and micro-beam analysis. New York: Plenum, 1975.

    Google Scholar 

  6. Duke PJ, Michette AG, eds. Modern microscopes. Techniques and applications. London: Plenum, 1990.

    Google Scholar 

  7. Spence JCH. Experimental high-resolution electron microscopy. Oxford: Clarendon Press, 1980.

    Google Scholar 

  8. Amos LA, Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci 1974; 14: 523–549.

    PubMed  CAS  Google Scholar 

  9. Aaronson RP, Blobel G. Isolation of nuclear pore-complexes in association with a lamina. Proc Natl Acad Sci USA 1975; 72: 1007–1011.

    PubMed  CAS  Google Scholar 

  10. Rout MP, Blobel G. Isolation of the yeast nuclear pore complex. J Cell Biol 1993; 123: 771–783.

    PubMed  CAS  Google Scholar 

  11. Cooke R. The mechanism of muscle contraction. CRC Int Rev Biochem 1986; 21: 53–118.

    CAS  Google Scholar 

  12. Stossel TP. Non-muscle actin binding proteins. Ann Rev Cell Biol 1985; 1: 353–402.

    PubMed  CAS  Google Scholar 

  13. Sato M, Schwartz WH, Pollard TD. Dependence of the mechanical properties of actin: alpha-actinin gels on deformation rate. Nature 1987; 325: 828–830.

    PubMed  CAS  Google Scholar 

  14. Korn ED, Cartier M-F, Pantaloni D. Actin polymerization and ATP hydrolysis. Science 1987; 238: 638–644.

    PubMed  CAS  Google Scholar 

  15. Tilney LG, Bonder EM, DeRosier DJ. Actin filaments elongate from their membrane-associated ends. J Cell Biol 1981; 90: 485–494.

    PubMed  CAS  Google Scholar 

  16. Matsudaira P, Janmey P. Pieces in the actin-severing protein puzzle. Cell 1988; 54: 139–140.

    PubMed  CAS  Google Scholar 

  17. Pollard TD. The myosin crossbridge problem. Cell 1987; 48: 909–910.

    PubMed  CAS  Google Scholar 

  18. Yin HL. Gelsolin: calcium and polyphosphoinositide-regulated actin modulating protein. Bioessays 1987; 7: 176–179.

    PubMed  CAS  Google Scholar 

  19. Adams RJ, Pollard TD. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature 1986; 322: 754–756.

    PubMed  CAS  Google Scholar 

  20. Gerace L, Blobel G. The nuclear envelope lamina is reversibly de-polymerized during mitosis. Cell 1980; 19: 277–288.

    PubMed  CAS  Google Scholar 

  21. Georgatos S, Stournaras C, Blobel G. Heterotypic and homotypic associations between the nuclear lamins: site-specificity and control by phosphorylation. Proc Natl Acad Sci USA 1988; 85: 4325–4329.

    PubMed  CAS  Google Scholar 

  22. Aebi U, Kohn J, Buhle L et al. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 1986; 323: 560–564.

    PubMed  CAS  Google Scholar 

  23. Worman HJ, Yuan J, Blobel G et al. A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci USA 1988; 85: 8531–8534.

    PubMed  CAS  Google Scholar 

  24. Franke WW. Nuclear lamins and cytoplasmic intermediate filament proteins: a growing multigene family. Cell 1987; 48: 33–34.

    Google Scholar 

  25. Akey CW, Radermacher M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J Cell Biol 1993; 122: 1–19.

    PubMed  CAS  Google Scholar 

  26. Goldberg MW, Allen TD. The nuclear pore complex: Three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 1993; 106: 261–274.

    PubMed  CAS  Google Scholar 

  27. Ris H, Malecki M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J Struct Biol 1993; 111: 148–157.

    PubMed  CAS  Google Scholar 

  28. Rout MP, Wente SR. Pores for thought: nuclear pore complex proteins. Trends Cell Biol 1994; 4: 357–363.

    PubMed  CAS  Google Scholar 

  29. Panté N, Aebi U. Towards understanding the three-dimensional structure of the nuclear pore complex at the molecular level. Curr Opin Struct Biol 1994; 4: 187–196.

    Google Scholar 

  30. Miller M, Park MK, Hanover JA. Nuclear pore complex: structure, function, and regulation. Physiol Rev 1991; 71: 909–949.

    PubMed  CAS  Google Scholar 

  31. Gerace L, Ottaviano Y, Kondor-Koch C. Identification of a major polypeptide of the nuclear pore-complex. J Cell Biol 1982; 95: 826–837.

    PubMed  CAS  Google Scholar 

  32. Snow CM, Senior A, Gerace L. Monoclonal antibodies identify a group of nuclear pore-complex glycoproteins. J Cell Biol 1987; 104: 1143–1156.

    PubMed  CAS  Google Scholar 

  33. Hurt EC. A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life-cycle of Saccharomyces cerevisiae. EMBO J 1988; 7: 4323–4334.

    PubMed  CAS  Google Scholar 

  34. Starr CM, d’Onofrio M, Park MK et al. Primary sequence and heterologous expression of nuclear pore glycoprotein p62. J Cell Biol 1990; 110: 1861–1871.

    PubMed  CAS  Google Scholar 

  35. Buss F, Stewart M. Macromolecular interactions in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the rod domain of p62. J Cell Biol 1995; 128: 251–261.

    PubMed  CAS  Google Scholar 

  36. Hallberg E, Wozniak RW, Blobel G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 1993; 122: 513–521.

    PubMed  CAS  Google Scholar 

  37. Wozniak RW, Blobel G, Rout MP. POM-152 is an integral protein of the pore membrane domain of the yeast nuclear envelope. J Cell Biol 1994; 125: 31–42.

    PubMed  CAS  Google Scholar 

  38. Greber UF, Senior A, Gerace L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J 1990; 9: 1495–1502.

    PubMed  CAS  Google Scholar 

  39. Wilken N, Kossner U, Senecal JL et al. NUP-180, a novel nuclear pore complex protein localizing to the cytoplasmic ring and associated fibrils. J Cell Biol 1993; 123: 1345–1254.

    PubMed  CAS  Google Scholar 

  40. Wu J, Manyunis MJ, Kraemer D et al. NUP-358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 1995; 270: 14209–14213.

    PubMed  CAS  Google Scholar 

  41. Kraemer DM, Strambio de Castillia C, Blobel G et al. The essential yeast nucleoporin NUP-159 is located on the cytoplasmic side of the nuclear pore-complex and serves in karyopherin-mediated binding of transport substrate. J Biol Chem 1995; 270: 19017–19021.

    PubMed  CAS  Google Scholar 

  42. Guan T, Muller S, Klier G et al. Structural analysis of the p62 complex, an assembly of 0-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 1995; 6: 1591–1603.

    PubMed  CAS  Google Scholar 

  43. Panté N, Bastos R, McMorrow I et al. Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J Cell Biol 1994; 126: 603–617.

    PubMed  Google Scholar 

  44. Davis LI, Blobel G. Identification and characterization of a nuclear pore-complex protein. Cell 1986; 45: 699–709.

    PubMed  CAS  Google Scholar 

  45. Dabauvalle MC, Loos K, Scheer U. Identification of a soluble precursor complex essential for nuclear pore assembly in vitro. Chromosoma 1990; 100: 56–66.

    PubMed  CAS  Google Scholar 

  46. Cordes V, Waizenegger I, Krohne G. Nuclear pore complex glycoprotein p62 of Xenopus laevis and mouse: cDNA cloning and identification of its glycosylated region. Eur J Cell Biol 1991; 55: 31–47.

    PubMed  CAS  Google Scholar 

  47. Sukegawa J, Blobel G. A nuclear pore-complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 1993; 72: 29–38.

    PubMed  CAS  Google Scholar 

  48. Radu A, Blobel G, Wozniak RW. NUP-155 is a novel nuclear pore complex protein that contains neither repetitive sequence motifs nor reacts with WGA. J Cell Biol 1993; 121: 1–10.

    PubMed  CAS  Google Scholar 

  49. Wozniak RW, Blobel G. The single transmembrane segment of gp210 is sufficient for sorting to the pore membrane domain of the nuclear envelope. J Cell Biol 1992; 119: 1441–1449.

    PubMed  CAS  Google Scholar 

  50. Cordes VC, Reidenbach S, Kohler A et al. Intranuclear filaments containing a nuclear pore complex protein. J Cell Biol 1993; 123: 1333–1344.

    PubMed  CAS  Google Scholar 

  51. Miller MW, Hanover JA. Functional nuclear pores reconstituted with beta1–4 galactose-modified 0-linked N-acetylglucosamine glycoproteins. J Biol Chem 1994; 269: 9289–9297.

    PubMed  CAS  Google Scholar 

  52. Maul G. The nuclear and cytoplasmic pore-complex: structure, dynamics, distribution and evolution. Int Rev Cytol 1977; Suppl 6: 75–186.

    Google Scholar 

  53. Forbes DJ. Structure and function of the nuclear pore complex. Ann Rev Cell Biol 1992; 8: 495–527.

    PubMed  CAS  Google Scholar 

  54. Radu A, Blobel G, Wozniak RW. NUP-107 is a novel nuclear pore complex protein that contains a leucine zipper. J Biol Chem 1994; 269: 17600–17605.

    PubMed  CAS  Google Scholar 

  55. Forbes DJ, Kirschner MW, Newport JW. Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 1983; 34: 13–33.

    PubMed  CAS  Google Scholar 

  56. Capco DG, Penman S. Mitotic architecture of the cell: the filament networks of the nucleus and cytoplasm. J Cell Biol 1983; 96: 896–906.

    PubMed  CAS  Google Scholar 

  57. Carmo-Fonescu M, Cicadao AJ, David-Ferreira JF. Filamentous cross-bridges link intermediate filaments to the nuclear pore-complexes. Eur J Cell Biol 1987; 45: 282–290.

    Google Scholar 

  58. Brasch KR. Fine structure and localisation of the nuclear matrix in situ. Exp Cell Res 1982; 140: 161–172.

    PubMed  CAS  Google Scholar 

  59. Nickerson JA, Penman S. Localization of nuclear matrix core filament proteins at interphase and mitosis. Cell Biol Internat Rep 1992; 16: 811–826.

    CAS  Google Scholar 

  60. Chew EC, Cheng-Chew SB, Deharven E et al. Distribution of a novel nuclear protein in normal and regenerating liver cells. In Vivo 1992; 6: 97–102.

    PubMed  CAS  Google Scholar 

  61. Chaly N, Bladon T, Setterfield G et al. Changes in the distribution of nuclear matrix antigens during the mitotic cell cycle. J Cell Biol 1984; 99: 661–671.

    PubMed  CAS  Google Scholar 

  62. Fey FG, Krochmalnic G, Penman S. The nonchromatin substructures of the nucleus: the RNP-containing and RNP-depleted matrixes analyzed by sequential fractionation and resinless electron microscopy. J Cell Biol 1976; 102: 1654–1665.

    Google Scholar 

  63. Comerford SA, Agutter PS, McLennan AG. Nuclear matrices. In: MacGillivray AJ, Birnie DG, eds. Nuclear Structures: their isolation and characterization. London: Butterworth, 1986: 1–13.

    Google Scholar 

  64. Berezney R, Coffey DS. Identification of a nuclear protein matrix. Biochem Biophys Res Commun 1976; 60: 1410–1417.

    Google Scholar 

  65. Arenstorf HP, Conway GC, Wooley JC et al. Nuclear matrix-like filaments form through artifactual rearrangements of HnRNP particles. J Cell Biol 1984; 99: 233a.

    Google Scholar 

  66. Bornens M, Courvalin JC. Isolation of nuclear envelopes with polyanions. J Cell Biol 1978; 76: 191–206.

    PubMed  CAS  Google Scholar 

  67. Kay RR, Fraser D, Johnston IR. A method for the rapid isolation of nuclear membranes from rat liver. Eur J Biochem 1972; 30: 145–154.

    PubMed  CAS  Google Scholar 

  68. Krachmarov C, Tasheva B, Markov D et al. Isolation and characterization of nuclear lamina from Ehlich ascites tumor cells. J Cell Biochem 1986; 30: 351–356.

    PubMed  CAS  Google Scholar 

  69. Beyer AL, Bouton AH, Miller OL. Correlation of hnRNP structure and nascent transcript cleavage. Cell 1981; 26: 155–165.

    PubMed  CAS  Google Scholar 

  70. Kaufmann SH, Coffey DS, Shaper JH. Considerations in the isolation of rat liver nuclear matrix, nuclear envelope and pore-complex lamina. Exp Cell Res 1981; 132: 105–123.

    PubMed  CAS  Google Scholar 

  71. Nakayasu H, Ueda K. Small nuclear RNP complex anchors on the actin filaments in bovine lymphocyte nuclear matrix. Cell Struct Funct 1984; 9: 317–326.

    PubMed  CAS  Google Scholar 

  72. Schindler M, Jiang L-W. Epidermal growth factor and insulin stimulate nuclear pore-mediated macromolecular transport in isolated rat liver nuclei. J Cell Biol 1987; 104: 849–853.

    PubMed  CAS  Google Scholar 

  73. Schröder H-C, Trölltsch D, Friese U et al. Mature mRNA is selectively released from the nuclear matrix by an ATP/dATP-dependent mechanism sensitive to topoisomerase inhibitors. J Biol Chem 1982; 262: 8917–8925.

    Google Scholar 

  74. Schröder H-C, Trölltsch D, Wenger R et al. Cytochalasin B selectively releases ovalbumin mRNA precursors but not the mature ovalbumin mRNA from hen oviduct nuclear matrix. Eur J Biochem 1993; 167: 239–245.

    Google Scholar 

  75. Sahlas DJ, Milankov K, Park PC et al. Distribution of snRNPs, splicing factor SC-35 and actin in interphase nuclei: Immunocytochemical evidence for differential distribution during changes in functional states. J Cell Sci 1993; 105: 347–357.

    PubMed  CAS  Google Scholar 

  76. Carter KC, Bowman D, Carrington W et al. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 1993; 259: 1330–1335.

    PubMed  CAS  Google Scholar 

  77. Van Eekelen CAG, van Venrooij WJ. HnRNA and its attachment to a nuclear matrix. J Cell Biol 1981; 88: 554–563.

    PubMed  Google Scholar 

  78. Berrios M, Osterhoff N, Fisher PA. In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix. Proc Natl Acad Sci USA 1985; 82: 4142–4146.

    PubMed  CAS  Google Scholar 

  79. Berezney R. Dynamics of the nuclear protein matrix. In: Busch H, ed. The Cell Nucleus. Vol 7. New York and London: Academic Press, 1979: 413–455.

    Google Scholar 

  80. Jackson DA, Cook PR. Transcription occurs at a nucleoskeleton. EMBO J 1985; 4: 919–926.

    PubMed  CAS  Google Scholar 

  81. Prather RS, Schatten G. Construction of the nuclear matrix at the transition from maternal to zygotic control of development in the mouse: An immunocytochemical study. Molec Reprod Devel 1992; 32: 203–208.

    CAS  Google Scholar 

  82. Lyderson BK, Pettijohn DE. Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: Distribution in a human/hamster hybrid cell. Cell 1980; 22: 489–499.

    Google Scholar 

  83. Compton DA, Szilak I, Cleveland DW. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 1992; 116: 1395–1408.

    PubMed  CAS  Google Scholar 

  84. Yang CH, Lambie EJ, Snyder M. NuMA: An unusually long coiled-coil related protein in the mammalian nucleus. J Cell Biol 1992; 116: 1303–1317.

    PubMed  CAS  Google Scholar 

  85. Zeng C, He D, Brinkley BR. Localization of NuMA protein isoforms in the nuclear matrix of mammalian cells. Cell Motil Cytoskel 1994; 29: 167–176.

    CAS  Google Scholar 

  86. Kallajoki M, Harborth J, Weber K et al. Microinjection of a monoclonal antibody against SPN antigen, now identified by peptide sequences as the NuMA protein, induces micronuclei in PtK2 cells. J Cell Sci 1993; 104: 139–150.

    PubMed  CAS  Google Scholar 

  87. Compton DA, Cleveland DW. NuMA is required for the proper completion of mitosis. J Cell Biol 1993; 120: 947–957.

    PubMed  CAS  Google Scholar 

  88. Compton DA, Cleveland DW. NuMA, a nuclear protein involved in mitosis and nuclear reformation. Curr Opin Cell Biol 1994; 6: 343–346.

    PubMed  CAS  Google Scholar 

  89. Zeng C, He, D, Berget SM et al. Nuclear-mitotic apparatus protein: a structural protein interface between the nucleoskeleton and RNA splicing. Proc Natl Acad Sci USA 1994; 91: 1505–1509.

    PubMed  CAS  Google Scholar 

  90. Blencowe BJ, Nickerson JA, Issner R et al. Association of nuclear matrix antigens with exon-containing splicing complexes. J Cell Biol 1994; 127: 593–608.

    PubMed  CAS  Google Scholar 

  91. Sibon OCM, Cremers FFM, Boonstra J et al. Localisation of EGFreceptor mRNA in the nucleus of A431 cells by light microscopy. Cell Biol Internat 1993; 17: 1–11.

    CAS  Google Scholar 

  92. Hozak R, Sasseville AM-J, Raymond Y et al. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J Cell Sci 1995; 108: 635–644.

    PubMed  CAS  Google Scholar 

  93. Sparks CA, Bangs PL, McNeil GP et al. Assignment of the nuclear mitotic apparatus protein NuMA gene to human chromosome 11q13. Genomics 1993; 17; 222–224.

    PubMed  CAS  Google Scholar 

  94. Tang TK, Tang CJC, Chao YJ et al. Nuclear mitotic apparatus protein (NuMA): spindle association, nuclear targeting and differential subcellular localization of various NuMA isoforms. J Cell Sci 1994; 107: 1389–1402.

    PubMed  CAS  Google Scholar 

  95. Compton DA, Luo CG. Mutation of the predicted p34(cdc2) phosphorylation sites in NuMA impair the assembly of the mitotic spindle and block mitosis. J Cell Sci 1995; 108: 621–633.

    PubMed  CAS  Google Scholar 

  96. Chan P-K, Chan W-Y, Yung BYM et al. Amino acid sequence of a specific antigenic peptide of protein B23. J Biol Chem 1986; 261: 14335–14341.

    PubMed  CAS  Google Scholar 

  97. Fields AP, Kaufmann SH, Shaper JH. Analysis of the internal nuclear matrix: oligomers of a 39KD nuclear polypeptide stabilized by disulfide bonds. Exp Cell Res 1986; 164: 139–153.

    PubMed  CAS  Google Scholar 

  98. Krohne G, Stick R, Kleinschmidt JA et al. Immunological localization of a major karyoskeletal protein in nucleoli of oocytes and somatic cells of Xenopus laevis. J Cell Biol 1982; 94: 749–754.

    PubMed  CAS  Google Scholar 

  99. Schmidt-Zachmann MS, Hügle B, Scheer U et al. Identification and localization of a novel nuclear protein of high molecular weight by a monoclonal antibody. Exp Cell Res 1987; 153: 327–346.

    Google Scholar 

  100. Yang L, Chow EC, Chewcheng SB et al. Fine-structural observation of a nucleolar-nuclear matrix-lamina-intermediate filament system in transformed cells. Anticancer Res 1994; 14: 1829–1832.

    PubMed  CAS  Google Scholar 

  101. Baran V, Vesela J, Rehak P et al. Localization of fibrillarin and nucleolin in nucleoli of mouse preimplantation embryos. Mol Reprod Dev 1995; 40: 305–310.

    PubMed  CAS  Google Scholar 

  102. Takeuchi K, Turley SJ, Tan EM et al. Analysis of the autoantibody response to fibrillarin in human disease and murine models of autoimmunity. J Immunol 1995; 154: 961–971.

    PubMed  CAS  Google Scholar 

  103. Lubben B, Rottmann N, Kubicka-Muranyi M et al. The specificity of disease-associated anti-fibrillarin antibodies compared with that of HGCL2-induced autoantibodies. Mol Biol Rep 1994; 20: 63–73.

    PubMed  CAS  Google Scholar 

  104. Cardido A, Medina FJ. Subnucleolar location of fibrillarin and variation in its levels during the cell cycle and during differentiation of plant cells. Chromosoma 1995; 103: 625–634.

    Google Scholar 

  105. Creancier L, Prats H, Zanibellato C et al. Determination of the functional domains involved in the nuclear targeting of nucleolin. Mol Biol Cell 1993; 4: 1239–1250.

    PubMed  CAS  Google Scholar 

  106. Roussel P, Hernandezverdun D. Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 1994; 214: 465–472.

    PubMed  CAS  Google Scholar 

  107. Dickinson LA, Kohwishigematsu T. Nucleolin is a matrix attachment region DNA binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol 1995; 15: 456–465.

    PubMed  CAS  Google Scholar 

  108. Zaidi SHE, Malter JS. Nucleolin and heterogeneous nuclear ribonucleo-protein C proteins specifically interact with the 3’ untranslated region of amyloid protein-procurser messenger RNA. J Biol Chem 1995; 270: 17292–17298.

    PubMed  CAS  Google Scholar 

  109. Kondo K, Inouye M. Yeast NSR1 protein that has structural similarity to nucleolin is involved in pre-ribosomal RNA processing. J Biol Chem 1992; 267: 16252–16258.

    PubMed  CAS  Google Scholar 

  110. Bray D. Cell Movements. New York: Garland, 1992.

    Google Scholar 

  111. Stossel TP. On the crawling of animal cells. Science 1993; 260: 1086–1094.

    PubMed  CAS  Google Scholar 

  112. Zigmond SH. Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil Cytoskel 1993; 25: 309–316.

    CAS  Google Scholar 

  113. Fey EG, Wan KM, Penman S. Epithelial cytoskeletal framework and nuclear matrix/intermediate filament scaffold: three-dimensional organization and protein composition. J Cell Biol 1984; 98: 1973–1984.

    PubMed  CAS  Google Scholar 

  114. Agutter PS. Models for solid-state transport: messenger RNA movement from nucleus to cytoplasm. Cell Biol Internat 1994; 18: 849–858.

    CAS  Google Scholar 

  115. Georgatos SD. Towards an understanding of nuclear morphogenesis. J Cell Biochem 1994; 55: 69–76.

    PubMed  CAS  Google Scholar 

  116. Berrios M, Fischer PA. A myosin heavy-chain-like polypeptide is associated with the nuclear envelope in higher eukaryotic cells. J Cell Biol 1986; 103: 711–724.

    PubMed  CAS  Google Scholar 

  117. Schindler M, Jiang L-W. Nuclear actin and myosin as control elements in nucleocytoplasmic transport. J Cell Biol 1986; 102: 859–862.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agutter, P.S., Taylor, P.L. (1996). Cellular Structures and Nucleocytoplasmic Transport. In: The Meaning of Nucleocytoplasmic Transport. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22502-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22502-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22504-2

  • Online ISBN: 978-3-662-22502-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics