Skip to main content

Ceramide: A Stress Response Mediator Involved in Growth Suppression

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Cell membranes are composed of a lipid bilayer comprised mostly of phospholipids. The majority of these lipids are glyceride-based and are termed gylcerolipids. Sphingolipids comprise less than 3% of cell membrane lipids and utilize ceramide as a backbone. This group of membrane lipids exhibits wide diversity, mostly due to the complexity of head groups at the carbon 1 (C1) position which exhibit both species and tissue specificity (Fig. 2.1). For a long time, much of the research on sphingolipids focused on the glycosphingolipids and the role of the glycosyl head group in biologic processes.1 A number of functions were associated with the glycosphingolipids, including a role in cellular interaction, differentiation, and oncogenic transformation.2 Additionally, complex glycosphingolipids were shown to serve as antigens important in the immune response, as receptors for viruses or bacteria, and as tumor markers.1,3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 1981; 50: 733–764.

    Article  PubMed  CAS  Google Scholar 

  2. Hakomori S. Bifunctional role of glycosphingolipids. J Biol Chem 1990; 265: 18713–18716.

    PubMed  CAS  Google Scholar 

  3. Karlsson KA. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 1989; 58: 309–350.

    Article  PubMed  CAS  Google Scholar 

  4. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and human platelets. J Biol Chem 1986; 261: 12604–12609.

    PubMed  CAS  Google Scholar 

  5. Hannun YA, Bell RM. Lysosphingolipid inhibition of protein kinase C: implications in the pathogenesis of the sphingolipidoses. Science 1987; 235: 670–674.

    Article  PubMed  CAS  Google Scholar 

  6. Hannun YA, Greenberg CS, Bell RM. Sphingosine inhibition of agonist dependent secretion and activation of human platelets implies that protein kinase C is a necessary and common event of the signal transduction pathway. J Biol Chem 1987; 262: 13620–13626.

    PubMed  CAS  Google Scholar 

  7. Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 1989; 243: 500–507.

    Article  PubMed  CAS  Google Scholar 

  8. Divecha N, Irvine RF. Phospholipid Signaling. Cell 1995; 80: 269–278.

    Article  PubMed  CAS  Google Scholar 

  9. Dennis EA, Rhee SG, Billah MM, Hannun YA. Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J 1991; 5: 2068–2077.

    PubMed  CAS  Google Scholar 

  10. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    Article  PubMed  CAS  Google Scholar 

  11. Okazaki T, Bell RM, Hannun YA. Sphingomyelin turnover induced by vitamin D, in HL-60 cells. Role in cell differentiation. J Biol Chem 1989; 264: 19076–19080.

    Google Scholar 

  12. Okazaki T, Bielawska A, Bell RM, Hannun YA. Role of ceramide as a lipid mediator of la,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 1990; 265: 15823–15831.

    PubMed  CAS  Google Scholar 

  13. Kim MY, Linardic C, Obeid L, Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 1991; 266: 484–489.

    PubMed  CAS  Google Scholar 

  14. Hannun YA. The Sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–3128.

    PubMed  CAS  Google Scholar 

  15. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77: 325–328.

    Article  PubMed  CAS  Google Scholar 

  16. Hannun YA, Obeid LM, Dbaibo GS. Ceramide: a novel second messenger and lipid mediator. Lipid Second Messengers 1996; 8: 177–204.

    CAS  Google Scholar 

  17. Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MYU, Obeid LM, Hannun YA. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 2047–2052.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA. Bc1–2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 1996; 93: 5325–5328.

    Article  PubMed  CAS  Google Scholar 

  19. Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta 1990; 1044: 1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Rother J, Van Echten G, Schwarzmann G, Sandhoff K. Biosynthesis of sphingolipids: Dihydroceramide and not sphinganine is desaturated by cultured cells. Biochem Biophys Res Commun 1992; 189: 14–20.

    Article  PubMed  CAS  Google Scholar 

  21. Spence MW. Sphingomyelinases. Adv Lipid Res 1993; 26: 3–23.

    PubMed  CAS  Google Scholar 

  22. Chatterjee S. Neutral sphingomyelinase. Adv Lipid Res 1993; 26: 25–47.

    PubMed  CAS  Google Scholar 

  23. Okazaki T, Bielawska A, Domae N, Bell RM, Hannun YA. Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of la,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 1994; 269: 4070–4077.

    PubMed  CAS  Google Scholar 

  24. Canman CE, Chen CY, Lee MH, Kastan MB. DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis. Cold Spring Harb Symp Quant Biol 1994; 59: 277–286.

    Article  PubMed  CAS  Google Scholar 

  25. Linardic CM, Jayadev S, Hannun YA. Activation of the sphingomyelin cycle by brefeldin A: Effects of brefeldin A on differentiation and implications for a role for ceramide in regulation of protein trafficking. Cell Growth Diff 1996; 7: 765–774.

    PubMed  CAS  Google Scholar 

  26. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 1994; 265: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  27. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76: 959–962.

    Article  PubMed  CAS  Google Scholar 

  28. Whyte P, Eisenman RN. Dephosphorylation of the retinoblastoma protein during differentiation of HL60 cells. Biochem Cell Biol 1992; 70: 1380–1384.

    Article  PubMed  CAS  Google Scholar 

  29. Lee EY-HP, Hu N, Yuan S-SF, Cox LA, Bradley A, Lee W-H, Herrup K. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes and Dev 1994; 8: 2008–2021.

    Article  PubMed  CAS  Google Scholar 

  30. Horowitz JM, Park S-H, Bogenmann E, Cheng J-C, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 1990; 87: 2775–2779.

    Article  PubMed  CAS  Google Scholar 

  31. Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1105.

    Article  PubMed  CAS  Google Scholar 

  32. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang C-M, Livingston DM. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 1989; 58: 1085–1095.

    Article  PubMed  CAS  Google Scholar 

  33. Goodrich DW, Wang NP, Qian Y-W, Lee EY-HP, Lee W-H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 1991; 67: 293–302.

    Article  PubMed  CAS  Google Scholar 

  34. Wang JY, Knudsen ES, Welch PJ. The retinoblastoma tumor suppressor protein. Adv Cancer Res 1994; 64: 25–85.

    Article  PubMed  CAS  Google Scholar 

  35. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  PubMed  CAS  Google Scholar 

  36. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258: 424–429.

    Article  PubMed  CAS  Google Scholar 

  37. Bagchi S, Raychaudhuri P, Nevins JR. Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E lA trans-activation. Cell 1990; 62: 659–669.

    CAS  Google Scholar 

  38. Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR. Adenovirus E1A, simian virus 40 tumor antigen, and human papil lomavirus E7 protein share the capacity to disrupt the interaction between tran scription factor E2F and the retino blastoma gene product. Proc Natl Acad Sci USA 1992; 89: 4549–4553.

    Article  PubMed  CAS  Google Scholar 

  39. Ludlow JW. Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J 1993; 7: 866–871.

    PubMed  CAS  Google Scholar 

  40. Vousden K. Interactions of human papil lomavirus transforming proteins with the products of tumor suppressor genes. FASEB J 1993; 7: 872–879.

    PubMed  CAS  Google Scholar 

  41. Hartwell LH, Kastan MB. Cell cycle controt and cancer. Science 1994; 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  42. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246: 629–634.

    Article  PubMed  CAS  Google Scholar 

  43. Bielawska A, Crane HM, Liotta D, Obeid LM, Hannun YA. Selectivity of ceramide mediated biology: lack of activity of erythro-dihydroceramide. J Biol Chem 1993; 268: 26226–26232.

    PubMed  CAS  Google Scholar 

  44. Dbaibo GS, Obeid LM, Hannun YA. TNFŒ signal transduction through cera mide: dissociation of growth inhibitory effects of TNFo from activation of NFKB. J Biol Chem 1993; 268: 17762–17766.

    PubMed  CAS  Google Scholar 

  45. Dbaibo GS, Pushkareva MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM, Hannun YA. Retinoblastoma gene product as a downstream target for a cera mide-dependent pathway of growth ar rest. Proc Natl Acad Sci USA 1995; 92: 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  46. Gomez-Munoz A, Martin A, O’Brien L, Brindley DN. Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J Biol Chem 1994; 269: 8937–8943.

    PubMed  CAS  Google Scholar 

  47. Borchardt RA, Lee WT, Kalen A, Buckley RH, Peters C, Schiff S, Bell RM. Growth dependent regulation of cellular ceramides in human T-cells. Biochim Biophys Acta 1994; 1212: 327–336.

    Article  PubMed  CAS  Google Scholar 

  48. Inokuchi J, Momosaki K, Shimeno H, Nagamatsu A, Radin NS. Effects of Dthreo-PDMP, an inhibitor of glucosylceramide synthetase, on expression of cell surface glycolipid antigen and binding to adhesive proteins by B16 melanoma cells. J Cell Physiol 1989; 141: 573–583.

    Article  PubMed  CAS  Google Scholar 

  49. Chao R, Khan W, Hannun YA. Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine. J Biol Chem 1992; 267: 23459–23462.

    PubMed  CAS  Google Scholar 

  50. Rani CS, Abe A, Chang Y, Rosenzweig N, Saltiel AR, Radin NS, Shayman JA. Cell cycle arrest induced by an inhibitor of glucosylceramide synthase: Correlation with cyclin-dependent kinases. J Biol Chem 1995; 270: 2859–2867.

    Article  PubMed  CAS  Google Scholar 

  51. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death in duced by ceramide. Science 1993; 259: 1769–1771.

    Article  PubMed  CAS  Google Scholar 

  52. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S. Induc tion of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 1994; 91: 73–77.

    Article  PubMed  CAS  Google Scholar 

  53. Ji L, Zhang G, Uematsu S, Akahori Y, Hirabayashi Y. Induction of apoptotic DNA fragmentation and cell death by natural ceramide. FEBS Lett 1995; 358: 211–214.

    Article  PubMed  CAS  Google Scholar 

  54. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994; 180: 525–535.

    Article  PubMed  CAS  Google Scholar 

  55. Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1994; 180: 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  56. Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff R, Yonehara S, Hannun YA, Seldin MF. Role of ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA 1995; 92: 8443–8447.

    Article  PubMed  CAS  Google Scholar 

  57. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick RN. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 1996; 82: 405–414.

    Article  Google Scholar 

  58. Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? [Review]. Cell 1995; 82: 349–352.

    Article  PubMed  CAS  Google Scholar 

  59. Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, Krammer PH, Peter ME, Dixit VM. FADD/MORT1 is a common mediator of CD 95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 1996; 271: 4961–4965.

    Article  PubMed  CAS  Google Scholar 

  60. Enari M, Talanian RV, Wong WW, Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 1996; 380: 723–726.

    Article  PubMed  CAS  Google Scholar 

  61. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53: 3976–3985.

    PubMed  CAS  Google Scholar 

  62. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346–347.

    Article  PubMed  CAS  Google Scholar 

  63. Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 1994; 269: 30761–30764.

    PubMed  CAS  Google Scholar 

  64. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM. Yama/ CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995; 81: 801–809.

    Article  PubMed  CAS  Google Scholar 

  65. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T, Yu VL, Miller DK. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43.

    Article  PubMed  CAS  Google Scholar 

  66. Smyth MJ, Perry DK, Zhang J, Poirier GG, Hannun YA, Obeid LM. prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bd-2. Biochem J 1996; 316: 25–28.

    PubMed  CAS  Google Scholar 

  67. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes [comment]. [Review]. Cell 1994; 79: 189–192.

    Article  PubMed  CAS  Google Scholar 

  68. Martin SJ, Takayama S, McGahon AJ, Miyashita T, Corbeil J, Kolesnick RN, Reed JC, Green DR. Inhibition of ceramide-induced apoptosis by Bd-2. Cell Death Differ 1995; 2: 253–257.

    PubMed  CAS  Google Scholar 

  69. Karasavvas N, Erukulla RK, Bittman R, Lockshin R, Hockenbery D, Zakeri Z. BCL-2 suppresses ceramide-induced cell killing. Cell Death Differ 1996; 3: 149–151.

    PubMed  CAS  Google Scholar 

  70. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-113 converting enzyme. Cell 1992; 69: 597–606.

    Article  PubMed  CAS  Google Scholar 

  71. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO1- and TNF receptor-induced cell death. Cell 1996; 85: 803–815.

    Article  PubMed  CAS  Google Scholar 

  72. Muzio M, Chinnaiyan AM, Kischkel EC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM. FLICE, a novel FADD-homologous ICE/ CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 1996; 85: 817–827.

    Article  PubMed  CAS  Google Scholar 

  73. Lane DP. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  PubMed  CAS  Google Scholar 

  74. Ballou LR, Chao CP, Holness MA, Barker SC, Raghow R. Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem 1992; 267: 20044–20050.

    PubMed  CAS  Google Scholar 

  75. Hayakawa M, Jayadev S, Tsujimoto M, Hannun YA, Ito F. Role of ceramide in stimulation of the transcription of cytosolic phospholipse A2 and cyclooxygenase 2. Biochem Biophs Res Comm 1996; 220: 681–686.

    Article  CAS  Google Scholar 

  76. Laulederkind SJF, Bielawska A, Raghow R, Hannun YA, Ballou LR. Ceramide induces interleukin 6 gene expression in human fibroblasts. J Exp Med 1995; 182: 599–604.

    Article  PubMed  CAS  Google Scholar 

  77. Mathias S, Younes A, Kan C-C, Orlow I, Joseph C, Kolesnick RN. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1ß. Science 1993; 259: 519–522.

    Article  PubMed  CAS  Google Scholar 

  78. Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Krönke M. TNF activates NF-KB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 1992; 71: 765–776.

    Article  PubMed  Google Scholar 

  79. Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 1994; 78: 1005–1015.

    Article  PubMed  CAS  Google Scholar 

  80. Betts JC, Agranoff AB, Nabel GJ, Shayman JA. Dissociation of endogenous cellular ceramide from NF-KB activation. J Biol Chem 1994; 269: 8455–8458.

    PubMed  CAS  Google Scholar 

  81. Johns LD, Sarr T, Ranges GE. Inhibition of ceramide pathway does not affect ability of TNF-a to activate nuclear factor-KB. J Immunol 1994; 152: 5877–5882.

    PubMed  CAS  Google Scholar 

  82. Kuno K, Sukegawa K, Ishikawa Y, Orii T, Matsushima K. Acid sphingomyelinase is not essential for the IL-1 and tumor necrosis factor receptor signaling pathway leading to NFKB activation. Int Immunol 1994; 6: 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  83. Yang Z, Costanzo M, Golde DW, Kolesnick RN. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor KB translocation in intact HL-60 cells. J Biol Chem 1993; 268: 20520–20523.

    PubMed  CAS  Google Scholar 

  84. Mathias S, Dressler KA, Kolesnick RN. Characterization of a ceramide-activated protein kinase: Stimulation by tumor necrosis factor a. Proc Natl Acad Sci USA 1991; 88: 10009–10013.

    Article  PubMed  CAS  Google Scholar 

  85. Joseph CK, Byun H-S, Bittman R, Kolesnick RN. Substrate recognition by ceramide-activated protein kinase: Evidence that kinase activity is proline-directed. J Biol Chem 1993; 268: 20002–20006.

    PubMed  CAS  Google Scholar 

  86. Liu J, Mathias S, Yang Z, Kolesnick RN. Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramideactivated protein kinase. J Biol Chem 1994; 269: 3047–3052.

    PubMed  CAS  Google Scholar 

  87. Diaz-Meco MT, Berra E, Municio MM, Sanz L, Lozano J, Dominguez I, Diaz-Golpe V, De Lera MTL, Alcamí J, Paya CV, Arenzana-Seisdedos F, Virelizier J-L, Moscat J. A dominant negative protein kinase C subspecies blocks NF-KB activation. Mol Cell Biol 1993; 13: 4770–4775.

    PubMed  CAS  Google Scholar 

  88. Lozano J, Berra E, Municio MM, DiazMeco MT, Dominguez I, Sanz L, Moscat J. Protein kinase C isoform is critical for KB-dependent promoter activation by sphingomyelinase. J Biol Chem 1994; 269: 19200–19202.

    PubMed  CAS  Google Scholar 

  89. Huwiler A, Brunner J, Hummel R, Vervoordeldonk M, Stabel S, Bosch HVD, Pfeilschifter J. Ceramide-binding and activation defines protein kinse c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci USA 1996; 93: 6959–6963.

    Article  PubMed  CAS  Google Scholar 

  90. Dobrowsky RT, Hannun YA. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem 1992; 267: 5048–5051.

    PubMed  CAS  Google Scholar 

  91. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Caramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 1993; 268: 15523–15530.

    PubMed  CAS  Google Scholar 

  92. Law B, Rossie S. The dimeric and catalytic foms of protein phosphatase 2A from rat brain are stimulated by C2-ceramide. J Biol Chem 1995; 270: 12808–12813.

    Article  PubMed  CAS  Google Scholar 

  93. Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S, Hannun YA. Ceramidemediated biology and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem 1993; 268: 9255–9261.

    PubMed  CAS  Google Scholar 

  94. Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 1994; 269: 19605–19609.

    PubMed  CAS  Google Scholar 

  95. Nickels JT, Broach JR. A ceramide-activated protein phosphatase mediates ceramide-induced GI arrest of Saccharomyces cerevisiae. Genes Dev 1996; 10: 382–394.

    Article  PubMed  CAS  Google Scholar 

  96. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994; 369: 156–160.

    Article  PubMed  CAS  Google Scholar 

  97. Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA. Ceramide activates the stress-activated protein kinases. J Biol Chem 1995; 270: 22689–22692.

    Article  PubMed  CAS  Google Scholar 

  98. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN. Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 1996; 380: 75–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dbaibo, G., Hannun, Y.A. (1997). Ceramide: A Stress Response Mediator Involved in Growth Suppression. In: Sphingolipid-Mediated Signal Transduction. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22425-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22425-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22427-4

  • Online ISBN: 978-3-662-22425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics