Skip to main content

Mechanisms of Regulated Pre-mRNA Splicing

  • Chapter
Pre-mRNA Processing

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Most messenger RNAs in higher eukaryotes are transcribed as precursors containing intervening sequences (introns). Introns are removed by a sophisticated processing machinery that splices together the sequences (exons) which form the mature mRNA (reviewed in chapters 3–5). Although the origin of introns is unclear, cells have learned to harness the splicing process to regulate gene expression. Retaining an intron or using alternative splice sites can be used to switch genes on or off, or to synthesize proteins with differences in their structural domains. The protein variants may differ in the presence or absence of a nuclear localization signal, a membrane attachment region, a phosphorylation site, a dimerization motif, a transcriptional activation domain, etc. These differences have important consequences for the functional properties of the protein, and even for the physiology and identity of the cell. A single alternative splicing decision can, for example, define the sex of flies, trigger programmed cell death or turn a nonmetastatic tumor into a malignant cancer. Table 6.1 summarizes some of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith CWJ, Patton JG and Nadal-Ginard B. Alternative splicing in the control of gene expression. Ann Rev Genet 1989; 23: 527–577.

    Article  PubMed  CAS  Google Scholar 

  2. McKeown M. Alternative mRNA splicing. Annu Rev Cell Biol 1992; 8: 133–155.

    Article  PubMed  CAS  Google Scholar 

  3. Mattox W, Ryner L and Baker BS. Auto-regulation and multifunctionality among trans-acting factors that regulate alternative pre-mRNA processing. J Biol Chem 1992; 267: 19023–19026.

    PubMed  CAS  Google Scholar 

  4. Rio DC. Splicing of pre-mRNA: mechanism, regulation and role in development. Curr Op Genetics and Dev 1993; 3: 574–584.

    Article  CAS  Google Scholar 

  5. Engebrecht JA, Voelkel-Meiman K and Roeder GS. Meiosis-specifîc RNA splicing in yeast. Cell 1991; 66: 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  6. Nandabalan K, Price LK and Roeder GS. Mutations in U1 snRNA bypass the requirement for a cell type-specific RNA splicing factor. Cell 1993; 73: 407–415.

    Article  PubMed  CAS  Google Scholar 

  7. Laski FA, Rio DC and Rubin GM. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 1986; 44: 7–19.

    Article  PubMed  CAS  Google Scholar 

  8. Misra S and Rio DC. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell 1990; 62: 269–284.

    Article  PubMed  CAS  Google Scholar 

  9. Siebel CW and Rio DC. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science 1990; 248: 1200–1208.

    Article  PubMed  CAS  Google Scholar 

  10. Siebel CW, Fresco LD and Rio DC. The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5′ splice site control Ul snRNP binding. Genes & Dev 1992; 6: 1386–1401.

    Article  CAS  Google Scholar 

  11. Daveba MD, Post-Beittenmiller MA and Wagner JR. Autogenous regulation of splicing of the transcript of a yeast ribosomal protein gene. Proc Natl Acad Sci USA 1986; 83: 5854–5857.

    Article  Google Scholar 

  12. Eng FJ and Wagner JR. Structural basis for the regulation of splicing of a yeast messenger RNA. Cell 1991; 65: 797–804.

    Article  PubMed  CAS  Google Scholar 

  13. Vilardell J and Warner JR. Regulation of splicing at an intermediate step in the formation of the spliceosome. Genes and Dev 1994; 8: 211–220.

    Article  PubMed  CAS  Google Scholar 

  14. Ge H and Manley JL. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 1990; 62: 25–34.

    Article  PubMed  CAS  Google Scholar 

  15. Ge H, Zuo P and Manley JL. Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell 1991; 66: 373–382.

    Article  PubMed  CAS  Google Scholar 

  16. Krainer AR, Mayeda A, Kozak D et al. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, Ul 70K, and Drosophila splicing regulators. Cell 1991; 66: 383–394.

    Article  PubMed  CAS  Google Scholar 

  17. Krainer A, Conway G and Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes & Dev 1990; 4: 1158–1171.

    Article  CAS  Google Scholar 

  18. Krainer AR, Conway GC and Kozak D. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 1990; 62: 35–42.

    Article  PubMed  CAS  Google Scholar 

  19. Fu X-D, Mayeda A, Maniatis T et al. General splicing factors SF2 and SC35 have equivalent activities in vitro and both affect alternative 5′ and 3′ splice site selection. Proc Natl Acad Sci USA 1992; 89: 11224–11228.

    Article  PubMed  CAS  Google Scholar 

  20. Mayeda A, Helfman DM and Krainer AR. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein Al and pre-mRNA splicing factor SF2/ASF. Mol Cell Biol 1993; 13: 2993–3001.

    PubMed  CAS  Google Scholar 

  21. Mayeda A and Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP Al and splicing factor SF2. Cell 1992; 68: 365–375.

    Article  PubMed  CAS  Google Scholar 

  22. Harper JE and Manley JL. A novel protein factor is required for use of distal alternative 5′ splice sites in vitro. Mol Cell Biol 1991; 11: 5945–5953.

    PubMed  CAS  Google Scholar 

  23. Wu JV and Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 1993; 75: 1061–1070.

    Article  PubMed  CAS  Google Scholar 

  24. Kohtz JD, Jamison SF, Will CL et al. RS domain mediated interactions between ASF/ SF2 and U1 snRNP: a mechanism for 5′ splice site recognition in mammalian mRNA precursors. Nature 1994; 368: 119–124.

    Article  PubMed  CAS  Google Scholar 

  25. Eperon IC, Ireland DI, Smith RA et al. Pathways for selection of 5′ splice sites by UlsnRNPs and SF2/ASF. EMBO J 1993; 12: 3607–3617.

    PubMed  CAS  Google Scholar 

  26. Cáceres JF and Krainer AR. Functional analysis of pre-mRNA splicing factor SF2/ ASF structural domains. EMBO J 1993; 12: 4715–4726.

    PubMed  Google Scholar 

  27. Zuo P and Manley JL. Functional domains of the human splicing factor ASF/SF2. EMBO J 1993; 12: 4727–4737.

    PubMed  CAS  Google Scholar 

  28. Zahler AM, Stolk JA, Lane WS et al. SR proteins: a conserved family of pre-mRNA splicing factors. Genes & Dev 1992; 6: 837–847.

    Article  CAS  Google Scholar 

  29. Zahler AM, Neugebauer KM, Stolk JA et al. Human SR proteins and isolation of a cDNA encoding SRp75. Mol Cell Biol 1993; 13: 4023–4028.

    PubMed  CAS  Google Scholar 

  30. Roth MB, Zahler AM and Stolk JA. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J Cell Biol 1991; 115: 587–596.

    Article  PubMed  CAS  Google Scholar 

  31. Fu X-D and Maniatis T. Isolation of a complementary DNA that encodes mammalian splicing factor SC35. Science 1992; 256: 535–538.

    Article  PubMed  CAS  Google Scholar 

  32. Zahler AM, Neugebauer KM, Stolk JA et al. Alternative pre-messenger RNA splicing by SR proteins. Science 1993; 260: 219–222.

    Article  PubMed  CAS  Google Scholar 

  33. Fu X-D. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 1993; 365: 82–85.

    Article  PubMed  CAS  Google Scholar 

  34. Bennett M, Michaud S, Kingston J et al. Protein components specifically associated with prespliceosome and spliceosome complexes. Genes & Dev 1992; 6: 1986–2000.

    Article  CAS  Google Scholar 

  35. Woppmann A, Will CL, Kornstädt U et al. Identification of an snRNP-associated kinase activity that phosphorylates arginine/ serine rich domains typical of splicing factors. Nucleic Acids Res 1993; 21: 2815–2822.

    Article  PubMed  CAS  Google Scholar 

  36. Tazi J, Kornstädt U, Rossi F et al. Thiophosphorylation of U1–70k protein inhibits pre-mRNA splicing. Nature 1993; 363: 283–286.

    Article  PubMed  CAS  Google Scholar 

  37. Mermoud JE, Cohen P and Lamond AI. Ser/ Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res 1992; 20: 5263–5269.

    Article  PubMed  CAS  Google Scholar 

  38. Tazi J, Daugeron M, Cathala G et al. Adenosine phosphorothioates (ATPocS and ATPtS) differentially affect the two steps of mammalian pre-mRNA. J Biol Chem 1992; 267: 4322–4326.

    PubMed  CAS  Google Scholar 

  39. Li H and Bingham P. Arginine/serine-rich domains of the su(iva) and tra RNA processing regulators target proteins to a sub-nuclear compartment implicated in splicing. Cell 1991; 67: 335–342.

    Article  PubMed  CAS  Google Scholar 

  40. Lee C-G, Zamore PD, Green MR et al. RNA annealing activity is intrinsically associated with U2AF. J Biol Chem 1993; 268: 13472–13478.

    PubMed  CAS  Google Scholar 

  41. Zamore PD, Patton JG and Green MR. Cloning and domain structure of the mammalian splicing factor U2AF. Nature 1992; 355: 609–614.

    Article  PubMed  CAS  Google Scholar 

  42. Kanaar R, Roche SE, Beall EL et al. The conserved pre-mRNA splicing factor U2AF from Drosophila: requirement for viability. Science 1993; 262: 569–573.

    Article  PubMed  CAS  Google Scholar 

  43. Michaud S and Reed R. An ATP-indepen-dent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes & Dev 1991; 5: 2534–2546.

    Article  CAS  Google Scholar 

  44. Jamison SF and Garcia-Blanco MA. An ATP-independent U2 small nuclear ribo-nucleoprotein particle/precursor mRNA complex requires both splice sites and the polypyrimidine tract. Proc Natl Acad Sci USA 1992; 89: 5482–5486.

    Article  PubMed  CAS  Google Scholar 

  45. Cline TW. Autoregulatory functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 1984; 107: 231–277.

    PubMed  CAS  Google Scholar 

  46. Sosnowski BA, Belote JM and McKeown M. Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 1989; 58: 449–459.

    Article  PubMed  CAS  Google Scholar 

  47. Inoue K, Hoshijima H, Sakamoto H et al. Binding of the Drosophila Sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 1990; 344: 461–463.

    Article  PubMed  CAS  Google Scholar 

  48. Valcárcel J, Singh R, Zamore PD et al. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 1993; 362: 171–175.

    Article  PubMed  Google Scholar 

  49. Bell LR, Maine EM, Schedl P et al. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarities to RNA binding proteins. Cell 1988; 55: 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  50. Bell LR, Horabin JI, Schedl P et al. Positive autoregulation of Sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 1991; 65: 229–239.

    Article  PubMed  CAS  Google Scholar 

  51. Granadino B, Campuzano S and Sanchez L. The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal. EMBO J 1990; 9: 2597–2602.

    PubMed  CAS  Google Scholar 

  52. Sakamoto H, Inoue K, Higuchi I et al. Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product. Nucleic Acids Res 1992; 20: 5533–5540.

    Article  PubMed  CAS  Google Scholar 

  53. Horabin JI and Schedl P. Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5′ splice site. Mol Cell Biol 1993; 13: 7734–7746.

    PubMed  CAS  Google Scholar 

  54. Burtis KC and Baker BS. Drosophila double-sex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 1989; 56: 997–1010.

    Article  PubMed  CAS  Google Scholar 

  55. Nagoshi RN, McKeown M, Burtis KC et al. The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell 1988; 53: 229–236.

    Article  PubMed  CAS  Google Scholar 

  56. Nagoshi RN and Baker BS. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex specific RNA splicing patterns. Genes & Dev 1990; 4: 89–97.

    Article  CAS  Google Scholar 

  57. Hedley ML and Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 1991; 65: 579–586.

    Article  PubMed  CAS  Google Scholar 

  58. Hoshijima K, Inoue K, Higuchi I et al. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 1991; 252: 833–836.

    Article  PubMed  CAS  Google Scholar 

  59. Ryner L and Baker BS. Regulation of doublesex pre-mRNA processing occurs by 3′ splice site activation. Genes & Dev 1991; 5: 2071–2085.

    Article  CAS  Google Scholar 

  60. Inoue K, Hoshijima K, Higuchi I et al. Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc Natl Acad Sci USA 1992; 89: 8092–8096.

    Article  PubMed  CAS  Google Scholar 

  61. Tian M and Maniatis T. Positive control of pre-mRNA splicing in vitro. Science 1992; 256: 237–240.

    Article  PubMed  CAS  Google Scholar 

  62. Tian M and Maniatis T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 1993; 74: 105–114.

    Article  PubMed  CAS  Google Scholar 

  63. Mattox W and Baker BS. Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila. Genes & Dev 1991; 5: 786–796.

    Article  CAS  Google Scholar 

  64. Watakabe A, Tanaka K and Shimura Y. The role of exon sequences in splice site selection. Genes & Dev 1993; 7: 407–418.

    Article  CAS  Google Scholar 

  65. Kuo H-C, Nasim FH and Grabowski PJ. Control of alternative splicing by the differential binding of Ul small nuclear ribo-nucleoprotein particle. Science 1991; 251: 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  66. Tacke R and Goridis C. Alternative splicing in the neural cell adhesion molecule pre-mRNA: regulation of exon 18 skipping depends on the 5′ splice site. Genes & Dev 1991; 5: 1416–1429.

    Article  CAS  Google Scholar 

  67. Sun Q, Mayeda A, Hampson RK et al. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes & Dev 1993; 7: 2598–2608.

    Article  CAS  Google Scholar 

  68. Lavigueur A, LaBranche H, Kornblihtt AR et al. A splicing enhancer in the human fibronectin alternate EDI exon interacts with SR proteins and stimulates U2 snRNP binding. Genes & Dev 1993; 7: 2405–2417.

    Article  CAS  Google Scholar 

  69. Robberson BL, Cote GJ and Berget SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 1990; 10: 84–94.

    PubMed  CAS  Google Scholar 

  70. Talerico M and Berget SM. Effect of splice site mutations on splicing of the preceding intron. Mol Cell Biol 1990; 10: 6299–6305.

    PubMed  CAS  Google Scholar 

  71. Niwa M and Berget SM. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes & Dev 1991; 5: 2086–2095.

    Article  CAS  Google Scholar 

  72. Niwa M, MacDonald CC and Berget SM. Are vertebrate exons scanned during splice site selection? Nature 1992; 360: 277–280.

    Article  PubMed  CAS  Google Scholar 

  73. Wassarman KM and Steitz JA. Association with terminal exons in pre-mRNAs: a new role for the UlsnRNP? Genes & Dev 1993; 7: 647–659.

    Article  CAS  Google Scholar 

  74. Hoffmann BE and Grabowski PJ. Ul snRNP targets an essential splicing factor, U2AF65, to the 3′ splice site by a network of interactions spanning the exon. Genes & Dev 1992; 6: 2554–2568.

    Article  Google Scholar 

  75. Cote GJ, Stolow DT, Peleg S et al. Identification of exon sequences and an exon binding protein involved in alternative RNA splicing of calcitonin/CGRP. Nucleic Acids Res 1992; 20: 2361–2366.

    Article  PubMed  CAS  Google Scholar 

  76. Yeakley JM, Hedjran F, Morfin J-P et al. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements. Mol Cell Biol 1993; 13: 5999–6011.

    PubMed  CAS  Google Scholar 

  77. Smith CWJ and Nadal-Ginard B. Mutually exclusive splicing of a-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 1989; 56: 749–758.

    Article  PubMed  CAS  Google Scholar 

  78. Black DL. Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells? Genes & Dev 1991; 5: 389–402.

    Article  CAS  Google Scholar 

  79. Black DL. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 1992; 69: 795–807.

    Article  PubMed  CAS  Google Scholar 

  80. Collett JW and Steele TE. Alternative splicing of a neural-specific Src mRNA (Src+) is a rapid and protein synthesis-independent response to neural induction in Xenopus laevis. Developmental Biology 1993; 158: 487–495.

    Article  PubMed  CAS  Google Scholar 

  81. Nordstrom JL, Roop DR, Tsai MJ et al. Identification of potential ovomucoid pre-mRNA precursors in chick oviduct nuclei. Nature 1979; 278: 328–331.

    Article  PubMed  CAS  Google Scholar 

  82. Neel H, Weil D, Giasante C et al. In vivo cooperation between introns during pre-mRNA processing. Genes & Dev 1993; 7: 2194–2205.

    Article  CAS  Google Scholar 

  83. Mullen MP, Smith CWJ, Patton JG et al. α-Tropomyosin mutually exclusive exon selection: competition between branchpoint/ polypyrimidine tracts determines default exon choice. Genes & Dev 1991; 5: 642–655.

    Article  CAS  Google Scholar 

  84. Clouet-d’Orval B, d’Aubenton-Carafa Y, Sirand-Pugnet P et al. RNA structure represses utilization of a muscle specific exon in HeLa cell nuclear extracts. Science 1991; 252: 1823–1828.

    Article  PubMed  Google Scholar 

  85. Libri D, Piseri A and Fiszman MY. Tissue specific splicing in vivo of the β-tropomyo-sin gene: dependence on an RNA secondary structure. Science 1991; 252: 1842–1845.

    Article  PubMed  CAS  Google Scholar 

  86. Libri D, Balvay L and Fiszman MY. In vivo splicing of the β-tropomyosin pre-mRNA: a role for branch point and donor site competition. Mol Cell Biol 1992; 12: 3204–3215.

    PubMed  CAS  Google Scholar 

  87. Helfman DM, Roscigno RF, Mulligan GJ et al. Identification of two distinct intron elements involved in alternative splicing of β-tropomyosin pre-mRNA. Genes & Dev 1990; 4: 98–110.

    Article  CAS  Google Scholar 

  88. Guo W, Mulligan GJ, Wormsley S et al. Alternative splicing of β-tropomyosin pre-mRNA: cis-acting elements and cellular factors that block the use of a skeletal muscle exon in nonmuscle cells. Genes & Dev 1991; 5: 2096–2107.

    Article  CAS  Google Scholar 

  89. Mulligan GJ, Guo W, Wormsley S et al. Polypyrimidine tract binding protein interacts with sequences involved in alternative splicing of β-tropomyosin pre-mRNA. J Biol Chem 1992; 267: 25480–25487.

    PubMed  CAS  Google Scholar 

  90. Nasim FH, Spears PA, Hoffman HM et al. A sequential splicing mechanism promotes selection of an optimal exon by repositioning a downstream 5′ splice site in prepro-tachykinin pre-mRNA. Genes & Dev 1990; 4: 1172–1184.

    Article  CAS  Google Scholar 

  91. Helfman DM, Ricci WM and Finn LA. Alternative splicing of tropomyosin pre-mRNAs in vitro and in vivo. Genes & Dev 1988; 2: 1627–1638.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 R.G. Landes Company and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valcárcel, J., Singh, R., Green, M.R. (1995). Mechanisms of Regulated Pre-mRNA Splicing. In: Pre-mRNA Processing. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22325-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22325-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22327-7

  • Online ISBN: 978-3-662-22325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics