Skip to main content

Anticytoskeletal Herbicides

  • Chapter

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Summary

Approximately one quarter of all of the marketed herbicides are classified into the mitotic disrupter herbicide group, including the widely used dinitroaniline and carbamate herbicides. Most of the herbicides in this group are used commercially to control grasses and other small-seeded weed species in larger-seeded dicot crop species. Gross morphology of the seedlings after treatment with mitotic disrupter herbicides is distinctly club-shabed or swollen, compared to the uniformly tapered roots found in untreated controls, and is similar to those effects noted for the classical microtubule disrupter colchicine. Microscopic examination of herbicide-treated roots reveals a concentration-dependent loss of microtubules, with phragmoplast and spindle arrays being affected at lowest concentration, and cortical and kinetochore microtubules being the least affected. The loss of these microtubule arrays results in the production of irregular cell walls, C-metaphase figures and lobed nuclei. Loss of the cortical microtubule array results in isodiametric growth, which leads to root clubbing in the zone of root elongation. Limited biochemical analysis indicates that the herbicides oryzalin and pronamide (propyzamide) bind directly to tubulin and that the carbamates and phosphoric amides can inhibit polymerization in vitro, indirectly confirming this mode of action for these herbicides as well. A possible non-tubulin target has been suggested for the herbicide dithiopyr, although the effects induced are identical to other members of this group. Data from both resistant mutants and molecular modelling indicate that the dinitroaniline and phosphoric amides bind to a similar site, possibly on the alpha-tubulin molecule. Microtubule disrupter herbicides, because of their high selectivity, have great potential in screens for mutants with altered herbicide sensitivity that could be of tremendous agronomic importance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeniji AA, Coyne DP (1981) Inheritance of resistance to trifluralin toxicity in Cucurbita moschata Poir. Hort Sci 16: 774–775

    Google Scholar 

  • Akashi T (1988) Effects of propyzamide on tobacco cell microtubules in vivo and in vitro. Plant Cell Physiol 29: 1053–1062

    CAS  Google Scholar 

  • Armbruster BL, Molin WT, Bugg MW (1991) Effects of the herbicide dithiopyr on cell division in wheat root tips. Pestic Biochem Physiol 39: 110–120

    Article  CAS  Google Scholar 

  • Bartels PG, Hilton JL (1973) Comparison of trifluralin, oryzalin, pronamide, propham and colchicine treatment on microtubules. Pestic Biochem Physiol 3: 462–472

    Article  CAS  Google Scholar 

  • Benbow JW, Bernberg EL, Korda A, Mead JR (1998) Synthesis and evaluation of dinitroanilines for treatment of cryptosporidiosis. Antimicrob Agents Chemother 42: 339–343

    PubMed  CAS  Google Scholar 

  • Blume YB, Strashnyuk NM (1998) Alterations of beta-tubulin in Nicotiana plumbaginifolia confers resistance to amiprophos methyl. Theor Appl Genet 97: 464–472

    Article  CAS  Google Scholar 

  • Chan MM, Triemer RE, Fong D (1991) Effects of the anti-microtubule drug oryzalin on growth and differentiation of the parasite Leishmania mexicana. Differentiation 46: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Ellis JR, Taylor R, Hussey PJ (1994) Molecular modeling indicates that two chemically distinct classes of anti-mitotic herbicide bind the same receptor site(s). Plant Physiol 105: 15–18

    PubMed  CAS  Google Scholar 

  • Hansen NJP, Anderson SB (1996) In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin and APM in Brassica napus microspore culture. Euphytica 88: 159–164

    Article  CAS  Google Scholar 

  • Heim DR, Roberts JI, Pike PD, Larrinua IM (1989) Mutation of a locus of Arabidopsis thaliana confers resistance to the herbicide isoxaben. Plant Physiol 90: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Hertel C, Quader H, Robinson DG, Marme D (1980) Anti-microtubular herbicides and fungicides affect Ca transport in plant mitochondria. Planta 149: 336–340

    Article  CAS  Google Scholar 

  • Hess FD (1987) Herbicide effects on the cell cycle of meristematic plant cells. Rev Weed Sci 3: 183–203

    CAS  Google Scholar 

  • Hess FD, Bayer DE (1977) Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J Cell Sci 24: 351–360

    PubMed  CAS  Google Scholar 

  • Hilton JL, Christiansen MN (1972) Lipid contribution to selective action of trifluralin. Weed Sci 20: 290–294

    CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1994) Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179: 16–25

    Article  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1995) Post-translational tubulin modifications in spermatogenous cells of the pteridophyte Ceratopteris richardii. Protoplasma 186: 169–182

    Article  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1996) Spline and flagellar microtubules are resistant to mitotic disrupter herbicides. Protoplasma 192: 57–69

    Article  CAS  Google Scholar 

  • Holmsen JD, Hess FD (1985) Comparison of the disruption of mitosis and cell plate formation in oat roots by DCPA, colchicine and propham. J Exp Bot 36: 1504–1513

    Article  CAS  Google Scholar 

  • James EH, Kemp MS, Moss SR (1995) Phytotoxicity of trifluoromethyl-and methyl substituted dinitroaniline herbicides on resistant and susceptible populations of black-grass (Alopecurus myosuroides). Pestic Sci 43: 273–277

    Article  CAS  Google Scholar 

  • Lehnen LP, Vaughn KC (1991a) Immunofluorescence and electron microscopic investigations of DCPA-treated oat roots. Pestic Biochem Physiol 40: 47–57

    Article  CAS  Google Scholar 

  • Lehnen LP, Vaughn KC (199 lb) Immunofluorescence and electron microscopic investigations of the effects of dithiopyr on onion root tips. Pestic Biochem Physiol 40: 58–67

    Google Scholar 

  • Lehnen LP, Vaughn KC (1992) The herbicide sindone B disrupts spindle microtubule organizing centers. Pestic Biochem Physiol 44: 50–59

    Article  CAS  Google Scholar 

  • Lehnen LP, Vaughan MA, Vaughn KC (1992) Terbutol affects spindle microtubule organizing centers. J Exp Bot 41: 537–546

    Article  Google Scholar 

  • McAlister FM, Holtum JAM, Powles SB (1995) Dinitroaniline herbicide resistance in rigid ryegrass (Lolium rigidum). Weed Sci 43: 55–62

    CAS  Google Scholar 

  • Molin WT, Khan RA (1997) Mitotic disrupter herbicides: recent advances and opportunities. In: Roe RM (ed) Herbicide activity: toxicology, biochemistry and molecular biology. IOS Press, Burke, VA, USA, pp 143–158

    Google Scholar 

  • Molin WT, Lee TC, Bugg MW (1988) Purification of a protein which binds to MON 7200. Plant Physiol (Suppl) 86: 21

    Google Scholar 

  • Morejohn LC, Fosket DE (1984) Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide amiprophos methyl. Science 224: 874–876

    Article  PubMed  CAS  Google Scholar 

  • Morejohn LC, Bureau TC, Molé-Bajer J, Bajer AS, Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172: 252–264

    Article  CAS  Google Scholar 

  • Pitzer KK, Werbovetz N, Brendke JJ, Scovill JP (1998) Synthesis and biological evaluation of 4chloro-3,5-dinitrobenzotrifluoride analogues as antileishmanial agents. J Med Chem 41: 4885–4889

    Article  PubMed  CAS  Google Scholar 

  • Poe RR, Coyne DP (1988) Differential Cucurbita tolerance to the herbicide trifluralin. J Am Soc Hort Sci 113: 35–40

    CAS  Google Scholar 

  • Sabba R, Vaughn KC (2000) Herbicides that inhibit cellulose biosynthesis. Weed Sci (in press)

    Google Scholar 

  • Smeda RJ, Vaughn KC, Morrison IN (1992) A novel pattern of herbicide cross-resistance in a trifluralin-resistant biotype of green foxtail [Scoria viridis (L.) Beauv.] Pestic Biochem Physiol 42: 227–241

    CAS  Google Scholar 

  • Stegink SJ, Vaughn KC (1988) Norflurazon (SAN-9789) reduces abscisic acid levels in cotton seedlings: a glandless isoline is more sensitive than its glanded counterpart. Pestic Biochem Physiol 31: 269–275

    Article  CAS  Google Scholar 

  • Strachen SD, Hess FD (1983) The biochemical mechanism of the dinitroaniline herbicide oryzalin. Pestic Biochem Physiol 20: 141–150

    Article  Google Scholar 

  • Strang RH, Rogers RL (1972) A microautoradiographic study of C-14 trifluralin absorption. Weed Sci 19: 363–369

    Google Scholar 

  • Vaughan MA, Vaughn KC (1987) Pronamide disrupts mitosis in a unique manner. Pestic Biochem Physiol 28: 182–193

    Article  CAS  Google Scholar 

  • Vaughan MA, Vaughn KC (1988) Carrot microtubules are dinitroaniline resistant. I. Cytological and cross-resistance studies. Weed Res 2: 73–83

    Google Scholar 

  • Vaughan MA, Vaughn KC (1990) DCPA causes cell plate disruption in wheat roots. Ann Bot 65: 379–388

    CAS  Google Scholar 

  • Vaughn KC, Harper JDI (1998) Microtubule organizing centers and nucleating sites in land plants. Int Rev Cytol 181: 75–149

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Koskinen WC (1987) Effects of trifluraline metabolites on goosegrass (Eleusine indica) root meristems. Weed Sci 35: 36–44

    CAS  Google Scholar 

  • Vaughn KC, Lehnen LP (1991) Mitotic disrupter herbicides. Weed Sci 39: 450–457

    CAS  Google Scholar 

  • Vaughn KC, Vaughan MA (1988) Mitotic disrupters from plant cells, effects on plants. In: Cutler HG (ed) Biologically active natural products: potential uses in agriculture. American Chemical Society, Washington DC, pp 273–293

    Chapter  Google Scholar 

  • Vaughn KC, Vaughan MA (1990) Structural and biochemical characterization of dinitroanilineresistant Eleusine. In: Green MB, Le Baron HM, Moberg WK (eds) Managing resistance to agrochemicals: from fundamental research to practical strategies. Am Chem Soc, Washington DC, pp 364–375

    Chapter  Google Scholar 

  • Vaughn KC, Vaughan MA (1991) Dinitroaniline resistance in Eleusine indica may be due to hyper-stabilized microtubules. In: Caseley JC, Cussans GW, Atkins RK (eds) Herbicide resistance in weeds and Crops. Butterworth-Heinemann, Oxford, pp 177–186

    Google Scholar 

  • Vaughn KC, Marks MD, Weeks DP (1987) A dinitroaniline resistant mutant of Eleusine indica exhibits cross-resistance and supersensitivity to antimicrotubule herbicides and drugs. Plant Physiol 83: 956–964

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Duncan DR, Rayburn AI, Petolino JF, Widholm JM (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet 81: 205–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaughn, K.C. (2000). Anticytoskeletal Herbicides. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22300-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22300-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22302-4

  • Online ISBN: 978-3-662-22300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics