Skip to main content

Microtubular and Cytoskeletal Mutants

  • Chapter

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Summary

Microtubules are biochemically one of the simplest, yet functionally most important, cellular organelles in the plant and animal kingdoms. They are integral components of a dynamic, three-dimensional framework referred to as the cytoskeleton. In addition to a fundamental role in intracellular movement, the microtubule, microfilament and intermediate filament arrays of the cytoskeleton are networks upon which asymmetric distribution of subcellular constituents is established and from which these polarized regulatory molecules mediate morphogenesis. The functions of microtubules reflect this common theme of distribution and movement. In plants, four principal microtubular functions are recognized: determination of the division plane; translocation of chromosomes; cell plate/phragmoplast formation; and control of cell morphology. Obviously, from a biotechnological point of view, the ability to control and regulate these processes via modifications of the component parts will have a profound effect on plant growth and development. Microtubules are composed primarily of a single, repeating macromolecular unit — tubulin. Tubulin itself is a heterodimeric protein, composed of two similar subunits: alpha-(α) and beta-(β)tubulin. The α- and β-tubulins are typically encoded by gene families, and these give rise to various tubulin isotypes that are differentially expressed and modified during growth and development. In addition, a ubiquitous and diverse class of proteins that bind to microtubules, known as microtubule associated proteins (MAPs), are believed to be important in nucleation, stabilization and bundling of microtubules.

Knowledge of the cytoskeleton and its fundamental role in cell morphogenesis and intracellular movement is central to an understanding of plant growth and development. Tubulin mutants have proven extremely useful for the analysis of microtubule and cytoskeletal function in algal, fungal and higher plant cells. The best-characterized mutations typically alter microtubule stability in the presence of numerous agents such as temperature, the antimicrotubular fungicides and herbicides, as well as various antitumour drugs (see Chap. 9). Tubulin gene mutations that produce non-conservative amino acid substitutions in tubulin proteins, and in turn may cause changes in the electrophoretic pattern of tubulin subunits, have been identified in Chlamydomonas reinhardtii, Saccharomyces cerevisiae, Aspergillus nidulans, Neurospora crassa and the higher plants Eleusine indica (goosegrass) and Nicotiana plumbaginifolia. Only goosegrass appears to possess naturally occurring site of action mutations. However, at least six other species of higher plants have been reported to have resistant biotypes, and thus may harbor similar mutations. Although these mutations can occur in either tubulin subunit, there may very well be a limited number of mutable sites resulting in phenotypes detectable as alterations in microtubule stability (e.g. sites that are critical for monomer-monomer or dimer-dimer binding). In Chlamydomonas, for example, single amino acid substitutions in the α- or β-tubulin subunits confer resistance to the dinitroaniline herbicides, increase microtubule stability and produce electrophoretic differences in the respective proteins as compared to wild-type tubulin. This chapter will review our current knowledge of mutant tubulins and other mutants suspected of affecting microtubule or cytoskeletal functioning in seed plants, algae and fungi. Also, it will explore and speculate on the biotechnological applications of these mutants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez P, Smith A, Fleming J, Solomon F (1998) Modulation of tubulin polypeptide ratios by the yeast protein Pac 10p. Genetics 149: 857–864

    PubMed  CAS  Google Scholar 

  • Anthony RG, Hussey PJ (1999) Double mutation in Eleusine indica a-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant 18: 669–674

    Article  CAS  Google Scholar 

  • Anthony RG, Waldin TR, Ray JA, Bright SWJ, Hussey PJ (1998) Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature 393: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Anthony RG, Reichelt S, Hussey PJ (1999) Dinitroaniline herbicide-resistant transgenic tobacco plants generated by co-overexpression of a mutant a-tubulin and a Il-tubulin. Nat Biotechnol 17: 712–716

    Article  PubMed  CAS  Google Scholar 

  • Archer J, Magendantz M, Vega L, Solomon F (1998) Formation and function of the Rb12p-ß-tubulin complex. Mol Cell Biol 18: 1757–1762

    PubMed  CAS  Google Scholar 

  • Archer JE, Vega LR (1995) Rbl2p, a yeast protein that binds to b-tubulin and participates in microtubule function in vivo. Cell 82: 425–434

    Article  PubMed  CAS  Google Scholar 

  • Asada T, Collings D (1997) Molecular motors in higher plants. Trends Plant Sci 2: 29–37

    Article  Google Scholar 

  • Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110: 179–189

    PubMed  CAS  Google Scholar 

  • Assaad FF, Mayer U, Wanner G, Jurgens G (1996) The KEULE gene is involved in cytokinesis in Arabidopsis. Mol Gen Genet 253: 267–277

    PubMed  CAS  Google Scholar 

  • Assaad FF, Mayer U, Lukowitz W, Juergens G (1997) Cytokinesis in somatic plant cells. Plant Physiol Biochem 35: 177–184

    CAS  Google Scholar 

  • Baird WV, Morejohn L, Zeng L, Mysore K, Kim HH (1996) Genetic, molecular and biochemical characterization of dinitroaniline herbicide resistance in goosegrass (Eleusine indica). In: Brown H, Cussans GW, Devine MD, Duke SO, Fernandez-Quintanilla C, Helwig A, Labrada RE, Landes M, Kudsk P, Streibig JC (eds) 2nd Int Weed Control Congress, Copenhagen, Denmark, April 3–9, 1996, pp 551–557

    Google Scholar 

  • Bajer AS, Mole-Bajer J (1986) Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Ann N Y Acad Sci 466: 767–784

    Article  PubMed  CAS  Google Scholar 

  • Balulka F, Barlow PW, Lichtscheidl IK, Volkmann D (1998) The plant cell body: a cytoskeletal tool for cellular development and morphogenesis. Protoplasma 202: 1–10

    Article  Google Scholar 

  • Bassham DC, Gal S, Conceicao ADS, Raikhel NV (1995) An Arabidopsis syntaxin homologue isolated by functional complementation of a yeast pep12 mutant. Proc Natl Acad Sci USA 92: 7262–7266

    Article  PubMed  CAS  Google Scholar 

  • Bell A (1998) Microtubule inhibitors as potential antimalarial agents. Parasitol Today 14: 234–240

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Jürgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575–587

    Google Scholar 

  • Binarovâ P, Hause B, Dolezel J, Drâber P (1998) Association of y-tubulin with kinetochore/centromeric region of plant chromosomes. Plant J 14: 751–757

    Article  Google Scholar 

  • Blume YB, Strashnyuk NM (1993) Obtaining microtubule protein mutants. Cytol Genet (Tsitologiya i Genetika) 27: 78–92

    Google Scholar 

  • Blume YB, Strashnyuk NM, Solodushko VG, Smertenko AP, Gleba YY (1996) Alterations of ßtubulin confers resistance to trifluralin of Nicotiana plumbaginifolia mutants obtained in vitro. Proc Natl Acad Sci Ukraine (Russ) No 7: 132–137

    Google Scholar 

  • Blume YB, Strashnyuk NM, Smertenko AP, Solodushko VG, Sidorov VA, Gleba YY (1998) Alteration of ß-tubulin in N. plumbaginifolia confers resistance to amiprophos-methyl. Theor Appl Genet 97: 464–472

    Article  CAS  Google Scholar 

  • Bokros CL, Hugdahl JD, Kim HH, Hanesworth VR, Van Heerden A, Browning KS, Morejohn LC (1995) Function of the p86 subunit of eukaryotic initiation factor (iso)4F as a microtubuleassociated protein in plant cells. Proc Natl Acad Sci USA 92: 7120–7124

    Article  PubMed  CAS  Google Scholar 

  • Bolduc C, Lee VD, Huang B (1988) ß-tubulin mutants of the unicellular green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 85: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Breviario D., Giani S, Meoni C (1995) Three rice cDNA clones encoding different (i—tubulin isotypes. Plant Physiol 108: 823–824

    Article  PubMed  CAS  Google Scholar 

  • Burland TG, Gull K, Schedl T, Boston RS, Dove WF (1983) Cell type-dependent expression of tubulins in Physarum. J Cell Biol 97: 1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Burland TG, Schedi T, Gull K, Dove WF (1984) Genetic analysis of resistance to benzimidazoles in Physarum: differential expression of 3—tubulin genes. Genetics 108: 123–141

    PubMed  CAS  Google Scholar 

  • Bums RG (1995) Identification of two new members of the tubulin family. Cell Motil Cytoskel 31: 255–258

    Article  Google Scholar 

  • Bums RG (1998) Synchronized division proteins. Nature 391: 121–123

    Article  CAS  Google Scholar 

  • Busch M, Mayer U, Jürgens G (1996) Molecular analysis of the Arabidopsis pattern formation gene GNOM: gene structure and intragenic complementation. Mol Gen Genet 250: 681–691

    PubMed  CAS  Google Scholar 

  • Cabral F, Sobel ME, Gottesman MM (1980) CHO mutants resistant to colchicine, colcemid, or griseofulvin have an altered fl—tubulin. Cell 20: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Cresti M (1999) Rethinking cytoskeleton in plant reproduction: toward a biotechnological future? Sex Plant Reprod 12: 67–70

    Article  Google Scholar 

  • Carlier MF (1989) Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int Rev Cytol 115: 139–170

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Rutten T, Lloyd CW (1996) Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J 10: 251–259

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Fong D (1990) Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science 249: 924–926

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Fong D (1994) Plant microtubule inhibitors against trypanosomatids. Parasitol Today 10: 448–451

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Grogl M, Bienen EJ, Fong D (1993) Herbicides to curb human parasitic infections: in vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc Natl Acad Sci USA 90: 5657–5661

    Article  PubMed  CAS  Google Scholar 

  • Chang—fie J, Sonobe S (1993) Identification and preliminary characterization of a 65 kD higher-plant microtubule-associated protein. J Cell Sci 105: 891–901

    Google Scholar 

  • Chu B, Wilson TJ, McCune-Zierath C, Snustad DP, Carter JV (1998) Two I—tubulin genes, TUBI and TUBE, of Arabidopsis exhibit largely nonoverlapping patterns of expression. Plant Mol Biol 37: 785–790

    Article  PubMed  CAS  Google Scholar 

  • Cleary AL, Smith LG (1998) The Tangled] gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10: 1875–1888

    PubMed  CAS  Google Scholar 

  • Cleveland DW (1987) The multitubulin hypothesis revisited: what have we learned? J Cell Biol 104: 381–383

    Article  PubMed  CAS  Google Scholar 

  • Cruz MC, Edlind T (1997) Beta—Tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungus Cryptococcus neoformans. Microbiology 143: 2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Cyr RJ (1991) Microtubule-associated proteins in higher plants. In: Lloyd CW (ed) The Cytoskeletal of Plant Growth and Form. Academic Press, New York, pp 57–67

    Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10: 153–180

    Article  PubMed  CAS  Google Scholar 

  • Davidse LC (1986) Benzimidazole fungicides: mechanism of action and biological impact. Ann Rev Phytopathol 24: 43–65

    Article  CAS  Google Scholar 

  • Davidse LC, Flach W (1977) Differential binding of methylbenzimidazole-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J Cell Biol 72: 174–193

    Article  PubMed  CAS  Google Scholar 

  • Delp CJ (1980) Coping with resistance to plant disease control agents. Plant Dis 64: 652–657

    Article  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor la. Plant Cell 6: 893–905

    PubMed  CAS  Google Scholar 

  • Ebneth A, Godemann R, Stramer K, Illenberger S, Trinczek B, Mandelkow EM, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer’s disease. J Cell Biol 143: 777–794

    Google Scholar 

  • Ellis JR, Taylor R, Hussey PJ (1994) Molecular modeling indicates that two chemically distinct classes of anti-mitotic herbicides bind to the same receptor site(s). Plant Physiol 105: 15–18

    PubMed  CAS  Google Scholar 

  • Erickson HP, O’Brien ET (1992) Microtubule dynamic instability and GTP hydrolysis. Annu Rev Biophys Biomol Struct 21: 145–166

    Article  PubMed  CAS  Google Scholar 

  • Fisher RH, Barton MK, Cohen JD, Cooke TI (1996) Hormonal studies offass, an Arabidopsis mutant that is altered in organ elongation. Plant Physiol 110: 1109–1121

    PubMed  CAS  Google Scholar 

  • Fosket DE (1989) Cytoskeletal proteins and their genes in higher plants. In: Stumpf PK, Conn, EE (eds) The biochemistry of plants. Academic Press, San Diego, pp 393–454.

    Google Scholar 

  • Fosket DE, Morejohn LC (1992) Structural and functional organization of tubulin. Annu Rev Plant Physiol Plant Mol Biol 43: 201–240

    Article  CAS  Google Scholar 

  • Foster KE, Burland TG, Gull K (1987) A mutant beta—tubulin confers resistance to the action of benzimidazole-carbamate microtubule inhibitors both in vivo and in vitro. Eur J Biochem 163: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Francis D, Dudits D, Inze D (1998) Plant cell division. Portland Press, London, pp 347

    Google Scholar 

  • Fujimura M, Oeda K, Inoue H, Kato T (1990) Mechanism of action of N-phenylcarbamates in benzimidazole-resistant Neurospora strains. In: Green MB, LeBaron HM, Moberg WK (eds) Managing resistance to agrochemicals. American Chemical Society, Washington, DC, pp 224–236

    Chapter  Google Scholar 

  • Fujimura M, Kamakura T, Inoue H, Inoue S, Yamaguchi I (1992a) Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates: effect of amino acid substitutions at position 198 in beta—tubulin. Pestic Biochem Physiol 44: 165–173

    Article  CAS  Google Scholar 

  • Fujimura M, Oeda K, Inoue H, Kato T (1992b) A single amino-acid substitution in the ß—tubulin gene of Neurospora crassa confers both carbendazim resistance and diethofencarb sensitivity. Curr Genet 21: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Goddard RH, Wick SM, Silflow CD, Snustad DP (1994) Microtubule components of the plant cytoskeleton. Plant Physiol 104: 1–6

    PubMed  CAS  Google Scholar 

  • Gossett BJ, Murdock EC, Toler JE (1992) Resistance of palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Tech 6: 587–591

    CAS  Google Scholar 

  • Gu X, Verma DPS (1996) Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J 15: 695–704

    PubMed  CAS  Google Scholar 

  • Gu X, Verma DPS (1997) Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division. Plant Cell 9: 157–169

    PubMed  CAS  Google Scholar 

  • Gunning BES (1982) The cytokinetic apparatus: its development and spatial regulation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, New York, p 230–288

    Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17: 1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Heap IM (1997) The occurrence of herbicide-resistant weeds worldwide. Pestic Sci 51: 235–243

    Article  CAS  Google Scholar 

  • Hepler PK, Bonsignore CL (1990) Caffeine inhibition of cytokinesis: ultrastructure of cell plate formation/degredation. Protoplasma 157: 182–192

    Article  CAS  Google Scholar 

  • Hepler PK, Hush JM (1996) Behavior of microtubules in living plant cells. Plant Physiol 112: 455–461

    PubMed  CAS  Google Scholar 

  • Hess FD, Bayer DE (1977) Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J Cell Sci 24: 351–360

    PubMed  CAS  Google Scholar 

  • Hightower RC, Meagher RB (1986) The molecular evolution of actin. Genetics 114: 315–332

    PubMed  CAS  Google Scholar 

  • Hiraoka Y, Toda T, Yanagida M (1984) The NDA3 gene of fission yeast encodes ß—tubulin: a cold sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Hirata D, Masuda H, Eddison M, Toda T (1998) Essential role of tubulin-folding cofactor D in microtubule assembly and its association with microtubules in fission yeast. EMBO J 17: 656–666

    Article  Google Scholar 

  • Hoffman JC, Vaughn KC (1994) Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179: 16–25

    Article  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1995a) Post-translational tubulin modifications in spermatogeneous cells of the pteridophyte Ceratopteris richardii. Protoplasma 186: 169–182

    Article  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1995b) Using the developing spermatogenous cells of Ceratopteris to unlock the mysteries of the plant cytoskeleton. Int J Plant Sci 156: 346–358

    Article  Google Scholar 

  • Huffaker TC, Hoyt MA, Botstein D (1987) Genetic analysis of the yeast cytoskeleton. Annu Rev Genet 21: 259–284

    Article  PubMed  CAS  Google Scholar 

  • Hugdahl JD, Morejohn LC (1993) Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol 102: 725–740

    PubMed  CAS  Google Scholar 

  • Hugdahl JD, Bokros CL, Hanesworth VR, Aalund GR, Morejohn LC (1993) Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin. Plant Cell 5: 1063–1080

    PubMed  CAS  Google Scholar 

  • Hugdahl JD, Bokros CL, Morejohn LC (1995) End-to-end annealing of plant microtubules by the p86 subunit of eukaryotic initiation factor-(iso)4F. Plant Cell 7: 2129–2138

    PubMed  CAS  Google Scholar 

  • Hush JM, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant cell using fluorescence redistribution after photobleaching. J Cell Sci 107: 775–784

    PubMed  Google Scholar 

  • Hussey PJ, Snustad DP, Silflow CD (1991) Tubulin gene expression in higher plants. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 15–27

    Google Scholar 

  • James EH, Kemp MS, Moss SR (1995) Phytotoxicity of trifluoromethyl-and methyl-substituted dinitroaniline herbidices on resistant and susceptible populations of black-grass (Alopecurus myosuroides). Pestic Sci 43: 273–277

    Article  CAS  Google Scholar 

  • James SW, Lefebvre PA (1992) Genetic interactions among Chlamydomonas reinhardtii mutations that confer resistance to anti-microtubule herbicides. Genetics 130: 305–314

    PubMed  CAS  Google Scholar 

  • James SW, Silflow CD, Lefebvre PA (1988) Mutants resistant to anti-microtubule herbicides map to a locus on the uni linkage group in Chlamydomonas reinhardtii. Genetics 118: 141–147

    PubMed  CAS  Google Scholar 

  • James SW, Silflow CD, Stroom P, Lefebvre PA (1993) A mutation in the al-tubulin gene of Chlamy- domonas reinhardtii confers resistance to anti-microtubule herbicides. J Cell Sci 106: 209–218

    PubMed  CAS  Google Scholar 

  • Jasieniuk M, Brule-Babel AL, Morrison IN (1994) Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci 42: 123–127

    CAS  Google Scholar 

  • Jones AL, Shabi E, Ehret G (1987) Genetics of negatively correlated cross-resistance to a Nphenylcarbamate in benomyl-resistant Venturia inaequalis. Can J Plant Pathol 9: 195–199

    Article  CAS  Google Scholar 

  • Joyce CM, Villemur R, Snustad DP, Silflow CD (1992) Tubulin gene expression in maize (Zea mays L.): change in isotype expression along the developmental axis of seedling roots. J Mol Biol 227: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Jung MK, Oakley BR (1990) Identification of an amino acid substitution in the benA, 13—tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motif Cytoskel 17: 87–94

    Article  CAS  Google Scholar 

  • Jung MK, Wilder IB, Oakley BR (1992) Amino acid alterations in the benA (ß-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motif Cytoskeleton 22: 170–174

    Article  CAS  Google Scholar 

  • Jürgens G, Mayer U, Torres-Ruiz RA, Berleth T, Miséra S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development Suppl 91: 27–38

    Google Scholar 

  • Kamada T, Sumiyoshi T, Takemaru T (1989) Mutations in 3—tubulin block transhyphal migration of nuclei in dikaryosis in the homoblasidiomycete Coprinus cinereus. Plant Cell Physiol 30: 1073–1080

    Google Scholar 

  • Kamada T, Hirami H, Sumiyoshi T, Tanabe S, Takemaru T (1990) Extragenic suppressor mutations of a fi—tubulin mutation in the basidiomycete Coprinus cinereus: isolation and genetic and biochemical analyses. Cuir Microbiol 20: 223–228

    Article  CAS  Google Scholar 

  • Katz W, Weinstein B, Solomon F (1990) Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number in yeast. Mol Cell Biol 10: 2730–2736

    Google Scholar 

  • Kilmartin J (1981) Purification of yeast tubulin by self-assembly in vitro. Biochemistry 20: 3629–3633

    Article  PubMed  CAS  Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329–342

    Article  PubMed  CAS  Google Scholar 

  • Koenraadt H, Jones AL (1993) Resistance to benomyl conferred by mutations in codon 198 or 200 of the beta—tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198. Phytopathology 83: 850–854

    Article  CAS  Google Scholar 

  • Koenraadt H, Somerville SC, Jones AL (1992) Characterization of mutations in the beta—tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82: 1348–1354

    Article  Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed a—tubulin genes. Plant Cell 4: 539–547

    PubMed  CAS  Google Scholar 

  • Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacetylatable a—tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskel 25: 158–170

    Article  CAS  Google Scholar 

  • Lambert AM (1993) Microtubule-organizing centers in higher plants. Curr Opin Cell Biol 5: 116–122

    Article  PubMed  CAS  Google Scholar 

  • Laporte K, Rossignol M, Trass JA (1993) Interaction of tubulin with the plama membrane: tubulin is present in purified plasmalemma and behaves as an integral membrane protein. Planta 191: 413–416

    Article  CAS  Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Ludkowitz W, Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139: 1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Lechtreck KF, Melkonian M (1991) An update on fibrous flagellar roots in green algae. Protoplasma 164: 38–44

    Article  Google Scholar 

  • Lee VD, Huang B (1990) Missense mutations at lysine 350 in ß2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. Plant Cell 2: 1051–1057

    PubMed  CAS  Google Scholar 

  • Lewis SA, Cowan NJ (1988) Complex regulation and functional versatility of mammalian alpha and beta—tubulin isotypes during differentiation of testis and muscle cells. J Cell Biol 106: 2023–2033

    Article  PubMed  CAS  Google Scholar 

  • Li J, Katiyar SK, Edlind TD (1996) Site-directed mutagenesis of Saccharomyces cerevisiae ß-tubulin: interaction between residue 167 and benzimidazole compounds FEBS Lett 385: 7–10

    CAS  Google Scholar 

  • Liaud MF, Brinkmann H, Cerff R (1992) The ß-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol Biol 18: 639–651

    Article  PubMed  CAS  Google Scholar 

  • Little M, Luduena RF (1985) Structural differences between brain ßl-and 132-tubulin: implications for microtubule assembly and colchicine binding. EMBO J 4: 51–56

    PubMed  CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A y—tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104: 1217–1228

    PubMed  CAS  Google Scholar 

  • Liu B, Joshi H, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) y—Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6: 303–314

    Google Scholar 

  • Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8: 119–132

    PubMed  CAS  Google Scholar 

  • Liu CM, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16: 21–31

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Johnson S, Wang TL (1995) cyd, A mutant of pea that alters embryo morphology is defective in cytokinesis. Dev Genet 16: 321–331

    Google Scholar 

  • Lloyd CW (1987) The Plant Cytoskeleton: The impact of fluorescence microscopy. Annu Rev Plant Physiol 38: 119–139

    Article  CAS  Google Scholar 

  • Lloyd CW (1991) The cytoskeletal basis of plant growth and form. Academic Press, London.

    Google Scholar 

  • Lopez I, Khan S, Sevik M, Cande WZ, Hussey PJ (1995) Isolation of a full length cDNA encoding Zea mays gamma—tubulin. Plant Physiol 107: 309–310

    Article  PubMed  CAS  Google Scholar 

  • Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178: 207–275

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Machin NA, Lee JM, Barnes G (1995) Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant. Mol Biol Cell 6: 1241–59

    PubMed  CAS  Google Scholar 

  • MacRae TH (1997) Tubulin post-translation modifications: enzymes and their mechanisms of action. Eur J Biochem 244: 265–278

    Article  PubMed  CAS  Google Scholar 

  • Marc J (1997) Microtubule-organizing centres in plants. Trends Plant Sci 2: 223–230

    Article  Google Scholar 

  • Marc J, Sharkey DE, Durso NA, Zhang M, Cyr RJ (1996) Isolation of a 90-kD microtubule-associated protein from Tobacco membranes. Plant Cell 8: 2127–2138

    PubMed  CAS  Google Scholar 

  • Marschall LG, Jeng RL, Mulholland J, Stearns T (1996) Analysis of Tub4p, a yeast y—tubulin-like protein: implications for microtubule-organizing center function. J Cell Biol 134: 443–454

    Article  PubMed  CAS  Google Scholar 

  • May GS, Tsang MLS, Smith H, Fidel S, Morris NR (1987) Aspergillus nidulans 13—tubulin genes are unusually divergent. Gene 55: 231–243

    Google Scholar 

  • Mayer U, Ruiz RAT, Berleth T, Misera S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353: 402–407

    Article  Google Scholar 

  • Mayer U, Buttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117: 149–162

    Google Scholar 

  • Mazars TL, Nacry C, Bouchez P, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13: 603–610

    Article  PubMed  Google Scholar 

  • McAlister FM, Holtum JAM, Powles SB (1995) Dinitroaniline herbicide resistance in rigid ryegrass (Lolium rigidum). Weed Sci 43: 55–62

    CAS  Google Scholar 

  • McClinton RS, Sung ZR (1997) Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201: 252–260

    Article  PubMed  CAS  Google Scholar 

  • McIntosh K, Pickett-Heaps JD, Gunning BES (1995) Cytokinesis in Spirogyra: integration of cleavage and cell-plate formation. Int J Plant Sci 156: 1–8

    Article  Google Scholar 

  • McKay GJ, Cooke LR (1997) A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani. FEMS Microbiol Lett 152: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, Williamson RE (1994) The Plant Cytoskeleton. In: Meyerowitz E, Sommerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1049–1084

    Google Scholar 

  • Meinke DW (1986) Embryo-lethal mutants and the study of plant embryo development. Oxf Sury Plant Mol Cell Biol 3: 122–165

    Google Scholar 

  • Meinke DW (1991) Perspectives on genetic analysis of plant embryogenesis. Plant Cell 3: 857–866

    PubMed  CAS  Google Scholar 

  • Morejohn LC, Bureau T, Mole-Bajer J, Bajer AS, Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172: 252–264

    Article  CAS  Google Scholar 

  • Morris NR (1986) The molecular gentics of of microtubule proteins in fungi. Exp Mycol 10: 77–82

    Article  CAS  Google Scholar 

  • Morris NR, Lai MH, Oakley CE (1979) Identification of a gene for a—tubulin in Aspergillus nidulans. Cell 16: 437–442

    Article  PubMed  CAS  Google Scholar 

  • Morrison IN, Todd BG, Nawolsky KM (1989) Confirmation of trifluralin-resistant green foxtail (Setaria viridis) in Manitoba. Weed Technol 3: 544–551

    CAS  Google Scholar 

  • Moss SR (1990) Herbicide cross-resistance in slender foxtail (Alopecurus myosuroides). Weed Sci 38: 492–496

    CAS  Google Scholar 

  • Mudge LC, Gossett BJ, Murphy TR (1984) Resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Weed Sci 32: 591–594

    CAS  Google Scholar 

  • Murphy TR, Gossett BJ, Toler JE (1986) Growth and development of dinitroaniline-susceptible and resistant goosegrass (Eleusine indica) biotypes under noncompetitive conditions. Weed Sci 34: 704–710

    Google Scholar 

  • Murthy JV, Kim HH, Hanesworth VR, Hugdahl JD, Morejohn LC (1994) Competitive inhibition of high affinity oryzalin binding to plant tubulin by the phosphoric amide herbicide amiprophosmethyl. Plant Physiol 105: 309–319

    PubMed  CAS  Google Scholar 

  • Mysore K, Baird V (1995) Molecular characterization of the tubulin-related gene families in herbicide resistant and susceptible goosegrass (Eleusine indica). Weed Sci 43: 28–33

    CAS  Google Scholar 

  • Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of the fl—tubulin gene from yeast and demonstration of its essentail function in vivo. Cell 33: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Nikolova G, Baeva G (1996) Pendimethalin-resistant biotypes of Echinochola crus-galli found in Bulgaria. Int Symp on Weed and Crop Resistance to Herbicides, Cordoba, Spain, April 3–6, 1995, pp 32–33

    Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998) Structure of the aß tubulin dimer by electron crystallography. Nature 391: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR (1985) Microtubule mutants. Can J Biochem Cell Biol 63: 479–488

    PubMed  CAS  Google Scholar 

  • Oakley BR (1992) y—Tubulin: the microtubule organizer? Trends Cell Biol 2: 1–5

    Google Scholar 

  • Oakley BR (1994) y—Tubulin. In: Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 33–45

    Google Scholar 

  • Oakley BR (1999) Methods for isolating and analyzing mitotic mutants in Aspergillus nidulans. In: Rieder CL (ed) Methods in Cell Biology. Academic Press, London, pp 347–368

    Google Scholar 

  • Oakley BR, Morris NR (1980) Nuclear movement is fl—tubulin dependent in Aspergillus nidulans. Cell 19: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Morris NR (1981) A ß—tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24: 837–845

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Oakley CE, Rinehart JE (1987) Conditionally lethal tubA a—tubulin mutations in Aspergillus nidulans. Mol Gen Genet 208: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Oakley CE, Yoon Y, Jung MK (1990) y—Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61: 1289–1301

    Google Scholar 

  • Oakley CE, Oakley BR (1989) Identification of y—tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338: 662–664

    Article  PubMed  CAS  Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Cloning and characterization of the gene for ß-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6: 2452–2461

    PubMed  CAS  Google Scholar 

  • Qin X, Gianì S, Breviario D (1997) Molecular cloning of three rice a—tubulin isotypes: differential expression in tissues and during flower development. Biochim et Biophys Acta 1354: 19–23

    Article  CAS  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge and New York.

    Book  Google Scholar 

  • Raper JR (1966) Genetics of sexuality in higher fungi. Ronald, New York, p. 283

    Google Scholar 

  • Reijo RA, Cooper EM, Beagle GJ, Huffaker TC (1994) Systematic mutational analysis of the yeast beta—tubulin gene. Mol Biol Cell 5: 29–43

    PubMed  CAS  Google Scholar 

  • Rogers HJ, Greenland AJ, Hussey PJ (1993) Four members of the maize beta—tubulin gene family are expressed in the male gametophyte. Plant J 4: 875–882

    Article  PubMed  CAS  Google Scholar 

  • Röper W, Röper S (1977) Centripetal wall formation in roots of Vicia faba after caffeine treatment. Protoplasma 93: 89–100

    Article  Google Scholar 

  • Rutten T, Chan J, Lloyd CW (1997) A 60-kDa plant microtubule-associated protein promotes the growth and stabilization of neurotubules in vitro. Proc Natl Acad Sci USA 94: 4469–4474

    Article  PubMed  CAS  Google Scholar 

  • Sage CR, Dougherty CA, Sullivan K, Farrell KW (1995) ß—Tubulin mutation suppresses microtubule dynamics in vitro and slows mitosis in vivo. Cell Motil Cytoskel 30: 285–300

    Article  CAS  Google Scholar 

  • Schatz PJ, Solomon F, Botstein D (1988) Isolation and characterization of the conditional-lethal muta- tion in the TUBI a—tubulin gene of the yeast Saccharomyces cerevisiae. Genetics 120: 681–695

    PubMed  CAS  Google Scholar 

  • Schibler MJ, Huang B (1991) The co1R4 and colR15 ß-tubulin mutations in Chlamydomonas confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol 113: 605–614

    Article  PubMed  CAS  Google Scholar 

  • Schmit AC, Stoppin V, Chevrier V, Job D, Lambert AM (1994) Cell cycle dependent distribution of a centrosomal antigen at the perinuclear MTOC or at the kinetochores of higher plant cells. Chromo-soma 103: 343–351

    Article  CAS  Google Scholar 

  • Seagull RW (1989) The plant cytoskeleton. Crit Rev Plant Sci 8: 131–167

    Article  CAS  Google Scholar 

  • Sheir-Neiss G, Lai MH, Morris NR (1978) Identification of a gene for (3—tubulin in Aspergillus nidulans. Cell 15: 639–647

    Article  PubMed  CAS  Google Scholar 

  • Sheridan WF (1995) Genes and embryo morphogenesis in angiosperms. Dev Gen 16: 291–297

    Article  Google Scholar 

  • Sheridan WF, Clark JK (1993) Mutational analysis of morphogenesis of the maize embryo. Plant J 3: 347–358

    Article  Google Scholar 

  • Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77: 1051–1062

    Google Scholar 

  • Shibaoka H, Nagai R (1994) The plant cytoskeleton. Curr Opin Cell Biol 6: 10–15

    Article  PubMed  CAS  Google Scholar 

  • Silflow CD, Oppenheimer DG, Kopczak SD, Ploense SE, Ludwig SR, Haas N, Snustad DP (1987) Plant tubulin genes: structure and differential expression during development. Dev Genet 8: 435–460

    Article  CAS  Google Scholar 

  • Smeda RJ Vaughn KC (1994) Resistance to dinitroaniline herbicides. In: Powels SB, Hokum JAM (eds) Herbicide resistance in plants: Biology and Biochemistry. CRC Press, Boca Raton, pp 215–228

    Google Scholar 

  • Smertenko A, Blume YB, Viklicky V, Drâber P (1997a) Exposure of tubulin structural domains in Nicotiana tabacum microtubules probed by monoclonal antibodies. Eur J Cell Biol 72: 104–112

    PubMed  CAS  Google Scholar 

  • Smertenko A, Blume YB, Viklicky V, Opatrnÿ Z, Drâber P (1997b) Post-translational modifications and multiple isoforms of tubulin in Nicotiana tabacum cells. Planta 201: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Archer JE, Solomon F (1998) Reguation of tubulin polypeptides and microtubule function: Rki l p interacts with the I3—tubulin binding protein Rbl2p. Chromosoma 107: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122: 481–489

    PubMed  CAS  Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD, Silflow CD (1992) The small genome of Arabidopsis thaliana contains at least nine expressed ß-tubulin genes. Plant Cell 4: 549–556

    PubMed  CAS  Google Scholar 

  • Sobel SG, Snyder M (1995) A highly divergent y—tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J Cell Biol 131: 1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Stearns T, Botstein D (1988) Unlinked noncomplementation: isolation of new conditional-lethal mutations in each of the tubulin genes of Saccharomyces cerevisiae. Genetics 119: 249–260

    PubMed  CAS  Google Scholar 

  • Stephens RE (1995) Ciliary membrane tubulin: isolation and fractionation. Methods Cell Biol 47: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Stoppin V, Lambert AM, Vantard M (1996) Plant microtubule-associated proteins ( MAPs) affect microtubule nucleation and growth at plant nuclei and mammalian centrosomes. Eur J Cell Biol 69: 211–230

    Google Scholar 

  • Thomas JH, Neff NF, Botstein D (1985) Isolation and characterization of mutations in the ß-tubulin gene of Saccharomyces cerevisiae. Genetics 111: 715–734

    PubMed  CAS  Google Scholar 

  • Toda T, Umesono K, Hirata A, Yanagida M (1983) Cold-sensitive nuclear division arrests mutants of the fission yeast Schizosaccharomyces pombe. J Mol Biol 168: 251–270

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Adachi Y, Hiraoka Y, Yanagida M (1984) Identification fo the pleiotropic cell division cycle gene NDA2 as one of two different a—tubulin genes in Schizosaccharomyces pombe. Cell 37: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Torres-Ruiz RA, Jürgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120: 2967–2978

    PubMed  CAS  Google Scholar 

  • Traas J, Laufs P (1998) Cell cycle mutants in higher plants: a phenotypical overview. In: Francis D, Dudits D, Inze D (eds) Plant Cell Division. Portland Press, London, pp 319–336

    Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375: 676–677

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Umesono K, Toda T, Hayashi S, Yanagida M (1983) Two cell division cycle genes NDA2 and NDA3 of the fission yeast Schizosaccharomyces pombe control microtubular organization and sensitivity to anti-mitotic benzimidazole compounds. J Mol Biol 168: 271–284

    Article  PubMed  CAS  Google Scholar 

  • Uribe X, Torres MA, Capellades M, Puigdomènech P, Rigau J 1998. Maize a—tubulin genes are expressed according to specific patterns of cell differentiation. Plant Mol Biol 37: 1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Vaughan MA, Vaughn KC (1987) Taxol treatment of Eleusine indicates hyper-stabilized tubulin may cause dinitroaniline resistance. Plant Physiol (Suppl) 83: 107

    Google Scholar 

  • Vaughan MA, Vaughn KC (1988) Carrot microtubules are dinotroaniline resistant. I. Cytological and cross-resistance studies. Weed Res 28: 73–83

    Google Scholar 

  • Vaughn KC, Harper JDI (1998) Microtubule-organizing centers and nucleating sites in land plants. Int Rev Cytol 181: 75–149

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Koskinen WC (1987) Effects of trifluralin metabolites on goosegrass (Eleusine indica) root meristems. Weed Sci 35: 36–42

    CAS  Google Scholar 

  • Vaughn KC, Vaughan MA (1986) Dinitroaniline resistance in Eleusine is due to altered tubulin. Plant Physiol (Suppl) 80: 67

    Google Scholar 

  • Vaughn KC, Vaughan MA (1990) Structural and biochemical characterization of dinitroanilineresistant Eleusine. In: Green MB, LeBaron HM, Moberg WK (eds) Managing resistance to agro-chemicals: from fundamental research to practical strategies. ACS Symp Series. American Chemical Society, Los Angeles, pp 364–375

    Chapter  Google Scholar 

  • Vaughn KC, Marks MD, Weeks DP (1987) A dinitroaniline-resistant mutant of Eleusine indica exhibits cross-resistance and susceptibility to antimicrotubule herbicides and drugs. Plant Physiol 83: 956–964

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Vaughan MA, Gossett BJ (1990) A biotype of goosegrass (Eleusine indica) with an intermediate level of dinitroaniline resistance. Weed Technol 4: 157–162

    Google Scholar 

  • Vega LR, Fleming J, Solomon F (1998) An a—tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins. Mol Biol Cell 9: 2349–2360

    PubMed  CAS  Google Scholar 

  • Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PD, Snustad DP, Silflow CD (1992) a—Tubulin gene family of maize (Zea mays L.). Evidence for two ancient a—tubulin genes in plants. J Mol Biol 227: 81–96

    Google Scholar 

  • Villemur R, Haas NA, Joyce CM, Snustad DP, Silflow CD ( 1994 Characterization of four new f3- tubulingenes and their expression during male flower development in maize (Zea mays L.). Plant Mol Biol 24: 295–315

    Article  PubMed  CAS  Google Scholar 

  • Waldin T, Ellis R, Hussey P (1992) Tubulin-isotype analysis of two grass species resistant to dinitroaniline herbicides. Planta 188: 258–264

    Article  CAS  Google Scholar 

  • Waldin TR (1995) Analysis of dinitroaniline and phosphorothioamidate resistant grasses. PhD Thesis, University of London, London

    Google Scholar 

  • Wang T, Fleury A, Ma J, Darmency H (1996) Genetic control of dinitroaniline resistance in foxtail millet (Setaria italica). J Hered 87: 423–426

    Article  CAS  Google Scholar 

  • Wehland J, Schroeder M, Weber K (1984) Organization of microtubules in stabilized meristematic plant cells revealed by a rat monoclonal antibody reacting only with the tyrosinated form of alpha—tubulin. Cell Biol Int Rep 8: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Weinstein B, Solomon F (1990) Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alpha—tubulin and beta—tubulin. Mol Cell Biol 10: 5295–5304

    PubMed  CAS  Google Scholar 

  • Whittaker DJ, Triplett BA (1999) Gene-specific changes in a—tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Wiche G, Oberkanins C, Himmler A (1991) Molecular structure and function of microtubuleassociated proteins. Int Rev Cytol 124: 217–273

    Article  PubMed  CAS  Google Scholar 

  • Wymer CL, Fisher DD, Moore RC, Cyr RJ (1996) Elucidating the mechanism of cortical microtubule reorientation in plant cells. Cell Motil Cytoskelet 35: 162–173

    Article  CAS  Google Scholar 

  • Yamamoto E, Baird WV (1999) Molecular characterization of four ß-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica. Plant Mol Biol 39: 45–61

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto E, Zeng L, Baird WV (1998) a—tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. Plant Cell 10: 297–308

    Google Scholar 

  • Yelverton F, Isgrigg I (1998) Herbicide-resistant weeds in turfgrass. Golf Course Management December 66: 56–61

    Google Scholar 

  • Yemets AI, Blume YB (1999) Resistance to herbicides with antimicrotubular activity: From natural mutants to transgenic plants. Russ J Plant Physiol 46: 786–796

    Google Scholar 

  • Yemets AI, Kundel’chuk OP, Smertenko AP, Solodushko VG, Rudas VA, Gleba YY, Blume YB (2000) Transfer of amiprophosmethyl-resistance from Nicotiana plumbaginifolia by somatic hybridization. Theor Appl Genet (in press)

    Google Scholar 

  • Yemets AI, Smertenko AP, Solodushko VG, Kundel’chuk OP, Blume YB (1997) Asymmetric somatic hybrids with mutant ß-tubulin resistant to amiprophosmethyl. In: Tewari KK, Singhal GS (eds) Plant molecular biology and biotechnology. Narosa Publishing House, New Delhi, India, pp 220–234

    Google Scholar 

  • Yemets AI, Strashnyuk NM, Blume YB (1997b) Plant mutants and somatic hybrids with resistance to trifluralin. Cell Biol Int 21: 912–914

    Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci USA 91: 6050–6053

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Baird WV (1997) Genetic basis of dinitroaniline herbicide resistance in a highly-resistant biotype of goosegrass (Eleusine indica). J Hered 88: 427–432

    Article  CAS  Google Scholar 

  • Zeng L, Baird WV (1999) Inheritance of resistance to anti-microtubule dinitroaniline herbicides in an Intermediate resistant biotype of Eleusine indica ( Poaceae ). Am J Bot 86: 940–947

    Google Scholar 

  • Zhang DH, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87: 8820–8824

    Article  PubMed  CAS  Google Scholar 

  • Zhang DH, Wadsworth P, Hepler PK (1993) Dynamics of microfilaments are similar but distinct from microtubules during cytokinesis in living, dividing plant cells. Cell Motil Cytoskelet 24: 151–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baird, V., Blume, Y.B., Wick, S.M. (2000). Microtubular and Cytoskeletal Mutants. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22300-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22300-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22302-4

  • Online ISBN: 978-3-662-22300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics