Skip to main content

Tubulin Genes and Promotors

  • Chapter

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Summary

The main scope of plant biotechnology is to introduce desirable traits into agronomically important crops. Several transgenic crops have already become available that carry characteristics modified by transformation. Current approaches rely on the transformation with genes that are under the control of promotor sequences cloned from different heterologous sources. This approach may suffer from the low efficiency in both expression and stability of the introduced sequence. In addition, the promotor sequences that are commonly used may not be those that are best suited for the plant of interest.

This chapter will focus on an approach based on tubulin genes that may overcome some of these problems. The idea of this approach is to find a more “natural” method for plant transformation by exploiting features that are specific for coding and promotor sequences of tubulin genes. All plants contain tubulins, and tubulins can therefore be exploited to design systems for homologous plant transformation that make use of the specific characteristics of these genes. For instance, one could isolate new promotor sequences that confer tissue-specific or ubiquitous expression and use them for the production of transgenic plants that are more resistant to stress or drugs.

The characteristics of plant tubulin genes and gene products will therefore be reviewed with focus on research that could possibly lead to applications in biotechnology. In the final part of the chapter, a potential application of tubulin features for plant transformation will be discussed and a versatile molecular tubulin kit (VMTK) system for plant transformation will be proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony RG, Hussey PJ (1998) Suppression of endogenous a and ß tubulin synthesis in transgenic maize calli overexpressing a and ß tubulins. Plant J 16: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Anthony RG, Waldin TR, Ray JA, Bright SWJ, Hussey PJ (1998) Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature 393: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35: 935–942

    PubMed  CAS  Google Scholar 

  • Blume YAB, Kundel’chuk OP, Solodushko VG, Sulimenko VV, Yemets AI (1995) Asymmetric somatic hybrids of higher plants resistant to trifluralin. In: de Prado J, Torres G, Marshall M (eds) Proc Int Symp on weed and crop resistance to herbicides. Cordoba, Spain, April 3–6, 1995, pp 182–185

    Google Scholar 

  • Bokros CL, Hugdahl JD, Blumenthal SSD, Morejohn LC (1996) Proteolytic analysis of polymerized maize tubulin: regulation of microtubule stability to low temperature and Ca’ by the carboxyl terminus of ß-tubulin. Plant Cell Environ 19: 539–548

    Article  CAS  Google Scholar 

  • Bond JF, Fridovich-Keil JL, Pillus L, Mulligan RC, Solomon F (1986) A chicken-yeast chimeric 0- tubulin protein is incorporated into mouse microtubules in vivo. Cell 44: 461–468

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Bergero R, Uribe X, Romera C, Rigau J, Puigdomenech P (1996) Transcriptional activation of a maize a-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J 9: 737–743

    Article  CAS  Google Scholar 

  • Breviario D (1997) Rice alpha and beta tubulins: features of the gene families and regulatory aspects. Rec Res Dev Plant Physiol 1: 241–264

    Google Scholar 

  • Breviario D, Gianì S, Meoni C (1995) Three rice (Oryza sativa L.) cDNA clones encoding different ßtubulin isotypes. Plant Physiol 108: 823–824

    Article  PubMed  CAS  Google Scholar 

  • Burns RG, Farrell KW (1996) Getting to the heart of beta-tubulin. Trends Cell Biol 6: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Bustos MM, Guiltinan MJ, Cyr RJ, Ahdoot D, Fosket DE (1989) Light regulation of 13-tubulin gene expression during intemode development in soybean (Glycine max Men.) Plant Physiol 91: 1157–1161

    CAS  Google Scholar 

  • Carnero-Diaz E, Martin F, Tagu D (1996) Eucalypt a-tubulin: cDNA cloning and increased level of transcripts in ectomycorrhizal root system. Plant Mol Biol 31: 905–910

    Article  Google Scholar 

  • Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an a-tubulin gene of Arabidopsis in pollen. Plant Cell 4: 557–571

    PubMed  CAS  Google Scholar 

  • Carpenter JL, Kopczak SD, Snustad DP, Silflow CD (1993) Semi-constitutive expression of an Arabidopsis thaliana a-tubulin gene. Plant Mol Biol 21: 937–942

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Snustad DP, Carter IV (1993) Alteration of 11-tubulin expression during low-temperature exposure in leaves of Arabidopsis thaliana. Plant Physiol 103: 371–377

    PubMed  CAS  Google Scholar 

  • Chu B, McCune-Zierath C, Snustad DP, Carter JV (1998) Two beta-tubulin genes, TUBI and TUB8 of Arabidopsis exhibit largely nonoverlapping patterns of expression. Plant Mol Biol 37: 785–790

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW (1987) The multitubulin hyphotesis revisited: what have we learned? J Cell Biol 104: 381–383

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW (1988) Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. TIBS 13: 339–343

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Pittinger MF, Feramisco JR (1983) Elevation of tubulin levels by microinjection suppresses new tubulin synthesis. Nature 305: 738–740

    Article  PubMed  CAS  Google Scholar 

  • Cyr RJ, Palevitz BA (1995) Organization of cortical microtubules in plant cells. Cun Opin Cell Biol 7: 65–71

    Article  CAS  Google Scholar 

  • Dale PJ (1995) R & D Regulation and field trialing of transgenic crops. TIBTECH 13: 398–403

    Article  CAS  Google Scholar 

  • Davis A, Sage CR, Dougherty CA, Farrell KW (1994) Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of I3-tubulin. Science 264: 839–842

    Article  PubMed  CAS  Google Scholar 

  • Deng WL, Haas NA, Snustad DP (1996) Characterization of naturally-occurring antisense RNAs of the Tua3 gene in Arabidopsis. Plant Physiol 111: 571

    Google Scholar 

  • Detrich HW, Prasad V, Luduena RF (1987) Cold-stable microtubules from antarctic fishes contain unique a-tubulins. J Biol Chem 262: 8360–8366

    PubMed  CAS  Google Scholar 

  • Dixon DC, Seagull RW, Triplett BA (1994) Changes in the accumulation of a-and I3-tubulin isotypes during cotton fiber development. Plant Physiol 105: 1347–1353

    PubMed  CAS  Google Scholar 

  • Dolfini S, Consonni G, Mereghetti M, Tonelli C (1993) Antiparallel expression of the sense and antisense transcripts of maize a-tubulin genes. Mol Gen Genet 241: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule reorientation in dwarf peas is accompanied by rapid modification of an a-tubulin isotype. Plant J 5: 363–372

    Article  CAS  Google Scholar 

  • Ellis JR, Taylor R, Hussey PJ (1994) Molecular modeling indicates that two chemically distinct classes of anti-mitotic herbicide bind to the same receptor site(s). Plant Physiol 105: 15–18

    PubMed  CAS  Google Scholar 

  • Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496

    Article  PubMed  CAS  Google Scholar 

  • Fosket DE, Morejohn LC (1992) Structural and functional organization of tubulin. Annu Rev Plant Physiol 43: 201–240

    Article  CAS  Google Scholar 

  • Gay DA, Sisodia SS, Cleveland DW (1989) Autoregulatory control of 0-tubulin mRNA stability is linked to translation elongation. Proc Natl Acad Sci USA 86: 5763–5767

    Article  PubMed  CAS  Google Scholar 

  • Giani S, Breviario D (1996) Rice I3-tubulin mRNA levels are modulated during flower development and in response to external stimuli. Plant Sci 116: 147–157

    Article  CAS  Google Scholar 

  • Giani S, Qin X, Faono F, Breviario D (1998) In rice, oryzalin and abscisic acid differentially affect tubulin mRNA and protein level. Planta 205: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Goddard GH, Wick SM, Silflow CD, Snustad DP (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol 104: 1–6

    PubMed  CAS  Google Scholar 

  • Gonzales-Garay ML, Cabral F (1996) a-Tubulin limits its own synthesis: evidence for a mechanism involving translation repression. J Cell Biol 135: 1525–1534

    Google Scholar 

  • Guiltinan MJ, Ma D, Barker RF, Bustos MM, Cyr RJ, Yadegari R, Fosket DE (1987) The isolation, characterization and sequence of two divergent fl-tubulin genes from soybean (Glycine max L.). Plant Mol Biol 10: 171–184

    Article  CAS  Google Scholar 

  • Han I, Jongewaard I, Fosket DE (1991) Limited expression of a diverged 13-tubulin gene during soybean (Glycine max Men.) development. Plant Mol Biol 16, 225–234

    Article  PubMed  CAS  Google Scholar 

  • Heinstein PF, Chang CJ (1994) Taxol. Annu Rev Plant Physiol Plant Mol Biol 45: 663–674

    Article  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1994) Mitotic disrupters act by a single mechanism but vary in efficacy. Protoplasma 179: 16–25

    Article  CAS  Google Scholar 

  • Holt JS, Powles SB, Holtum JAM (1993) Mechanisms and agronomic aspects of herbicide resistance. Annu Rev Plant Physiol 44: 203–229

    Article  CAS  Google Scholar 

  • Hoyle HD, Raff EC (1990) Two Drosophila beta tubulin isoforms are not functionally equivalent. J Cell Biol 111: 1009–1026

    Article  PubMed  CAS  Google Scholar 

  • Huang RF, Lloyd CW (1999) Gibberellic acid stabilizes microtubules in maize suspension cells to cold and stimulates the acetylation of alpha-tubulin. FEBS Lett 443: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Hugdahl JD, Morejohn LC (1993) Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol 102: 725–740

    PubMed  CAS  Google Scholar 

  • Hussey PJ, Haas N, Hunsperger J, Larkin J, Snustad DP, Silflow CD (1990) The ß-tubulin gene family in Zea mays: two differentially expressed ß-tubulin genes. Plant Mol Biol 15: 957–972

    Article  PubMed  CAS  Google Scholar 

  • Joyce CM, Villemur R, Snustad DP, Silflow CD (1992) Tubulin gene expression in maize (Zea mays L.) Change in isotype expression along the developmental axis of seedling root. J Mol Biol 227: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Kang SC, Choi YJ, Kim MC, Lim CO, Hwang I, Cho MJ (1994) Isolation and characterization of two 13-tubulin cDNA clones from rice. Plant Mol Biol 26: 1975–1979

    Article  PubMed  CAS  Google Scholar 

  • Kerr GP, Carter JV (1990a) Relationship between freezing tolerance of root-tip cells and cold stability of microtubules in rye (Secale cereale L.cv Puma). Plant Physiol 93: 77–82

    Article  PubMed  CAS  Google Scholar 

  • Kerr GP, Carter JV (1990b) Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiol 93: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Khan IA, Luduena RF (1996) Phosphorylation of beta ( III)-tubulin. Biochemistry 35: 3704–3711

    Google Scholar 

  • Koga-Ban Y, Niki T, Nagamura Y, Sasaki T, Minobe Y (1995) cDNA sequences of three kinds of 3tubulins from rice. DNA Res 2: 21–26

    Google Scholar 

  • Koontz DA, Choi JH (1993) Evidence for phosphorylation of tubulin in carrot suspension cells. Physiol Plant 87: 576–583

    Article  CAS  Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed a-tubulin genes. Plant Cell 4: 539–547

    PubMed  CAS  Google Scholar 

  • Leu W, Cao X, Wilson TJ, Snustad DP, Chua NH (1995) Phytochrome A and phytochrome B mediate the hypocotyl-specific downregulation of Tubl by light in Arabidopsis. Plant Cell 7: 2187–2196

    PubMed  CAS  Google Scholar 

  • Liaud M, Brinkmann H, Cerff R (1992) The f3-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol Biol 18: 639–651

    Article  PubMed  CAS  Google Scholar 

  • Ludwig SR, Oppenheimer DG, Silflow CD, Snustad DP (1988) The al -tubulin gene of Arabidopsis thaliana: primary structure and preferential expression in flowers. Plant Mol Biol 10: 311–321

    Article  CAS  Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107: 679–685

    PubMed  CAS  Google Scholar 

  • Mizuno K (1992) Induction of cold stability of microtubules in cultured tobacco cells. Plant Physiol 100: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Montoliu L, Rigau J, Puigdomènech P (1989) A tandem of a-tubulin genes preferentially expressed in radicular tissues from Zea mays. Plant Mol Biol 14: 1–15

    Article  Google Scholar 

  • Morejohn LC, Bureau TE, Molè-Bajer J, Bajer AS, Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172: 252–264

    Article  CAS  Google Scholar 

  • Murthy JV, Kim H-H, Hanesworth VR, Hugdahl JD, Morejohn LC (1994) Competitive inhibition of high-affinity Oryzalin binding to plant tubulin by the phosphoric amide herbicide amiprophosmethyl. Plant Physiol 105: 309–320

    PubMed  CAS  Google Scholar 

  • Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of the I3-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Niini SS, Tarkka MT, Raudaskoski M (1996) Tubulin and actin protein patterns in Scots pine (Pinus sylvestris) roots and developing ectomycorrhiza with Suillus bovinus. Physiol Plant 96: 186–192

    Article  CAS  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998) Structure of the aß tubulin dimer by electron crystallography. Nature 391: 199–206

    Article  PubMed  CAS  Google Scholar 

  • Okamura S, Naito K, Sonehara S, Ohkawa H, Kuramori S, Tatsuta M, Minamizono M, Kataoka T (1997) Characterization of the carrot beta-tubulin gene coding a divergent isotype, beta-2. Cell Struct Funct 22: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Palevitz BA (1993) Morphological plasticity of the mitotic apparatus in plants and its developmental consequences. Plant Cell 5: 1001–1009

    PubMed  Google Scholar 

  • Qin X, Gianì S, Breviario D (1997) Molecular cloning of three rice a-tubulin isotypes: differential expression in tissues and during flower development. Biochem Biophys Acta 1354: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157: 165–171

    Article  CAS  Google Scholar 

  • Schibler MJ, Huang B (1991) The colR4 and co1RI5 (3-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol 113: 605–614

    Article  PubMed  CAS  Google Scholar 

  • Smertenko A, Blume Y, Viklickÿ V, Opatmÿ Z, Draber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed 13-tubulin genes. Plant Cell 4: 549–556

    PubMed  CAS  Google Scholar 

  • Stocker M, Garcia-Mas J, Anas P, Messeguer R, Puigdomenech P (1993) A highly conserved a-tubulin sequence from Prunus amygdalus. Plant Mol Biol 22: 913–916

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Matsumoto S, Iwasaki S, Yahara I (1990) Molecular basis for determining the sensitivity of eukaryotes to the antimitotic drug rhizoxin. Mol Gen Genet 222: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Taylor MA, Wright F, Davies HV (1994) Characterization of the cDNA clones of two ß-tubulin genes and their expression in the potato plant (Solanum tuberosum L.) Plant Mol Biol 26: 1013–1018

    CAS  Google Scholar 

  • Thomas JH, Neff FN, Botstein D. (1985) Isolation and characterization of mutations in the 13-tubulin gene of Saccharomyces cerevisiae. Genetics 112: 715–734

    Google Scholar 

  • Tian G, Huang Y, Rommelaere H, Vendekerckove J, Ampe C, Cowan NJ (1996) Pathway leading to correctly folded 13-tubulin. Cell 86: 287–296

    Article  PubMed  CAS  Google Scholar 

  • Tonoike H, Han I, Jongewaard I, Doyle M, Guiltinan M, Fosket DE (1994) Hypocotyl expression and light downregulation of the soybean tubulin gene, tubBl. Plant J 5: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T, Yamane H, Murofushi N, Nick, P. (1994) Phytochrome inhibits the effectiveness of gibberellins to induce cell elongation in rice. Planta 194: 256–263

    Article  CAS  Google Scholar 

  • Uribe X, Torres MA, Capellades M, Puigdomenech P, Rigau J (1998) Maize alpha-tubulin genes are expressed according to specific patterns of cell differentiation. Plant Mol Biol 37: 1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Vassilevskaia TD, Ricardo CP, Rodrigues-Pousada C (1993) Molecular cloning and sequencing analysis of a 0-tubulin gene from Lupinus albus. Plant Mol Biol 22: 715–718

    Article  PubMed  CAS  Google Scholar 

  • Vats-Mehta S, Yarbrough L (1993) Expression of chick and yeast fl-tubulin encoding genes in insect cells. Gene 128: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Marks MD, Weeks DP (1987) A Dinitroaniline-resistant mutant of Eleusine indica exhibits cross-resistance and supersensitivity to antimicrotubule herbicides and drugs. Plant Physiol 83: 956–964

    Article  PubMed  CAS  Google Scholar 

  • Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PJ, Snustad DP, Silflow CD (1992) a-tubulin gene family of maize (Zea mays L.): evidence for two ancient a-tubulin genes in plants. J Mol Biol 227: 81–96

    Google Scholar 

  • Villemur R, Haas NA, Joyce CM, Snustad DP, Silflow CD (1994) Characterization of four new 13- tubulin genes and their expression during male flower development in maize (Zea mays L.) Plant Mol Biol 24: 295–315

    CAS  Google Scholar 

  • Wick SM, Zhao KN, Li CG, Goddard RH, Eun SO, Silflow CD, Snustad DP (1996) Tubulin genes and isoforms in plants. Plant Physiol 111: 10001

    Google Scholar 

  • Wymer C, Lloyd C (1996) Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci 1: 222–227

    Google Scholar 

  • Yamamoto E, Zeng L, Baird WV (1998) a-Tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. Plant Cell 10: 297–308

    Google Scholar 

  • Yan K, Dickman MB (1996) Isolation of a beta-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Appl Environ Microbiol 62, 3053–3056

    PubMed  CAS  Google Scholar 

  • Yoshimura T, Demura T, Igarashi M, Fukuda H (1996) Differential expression of three genes for different (3-tubulin isotypes during the initial culture of Zinnia mesophyll cells that divide and differentiate into tracheary elements. Plant Cell Physiol 37: 1167–1176

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules from transverse to longitudinal, in living plant cells. Proc Natl Acad USA 91: 6050–6053

    Article  CAS  Google Scholar 

  • Zabala JC, Fontalba A, Avila J (1996) Tubulin folding is altered by mutations in a putative GTPbinding motif. J Cell Sci 109: 1471–1478

    PubMed  CAS  Google Scholar 

  • Zhang D, Waldsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87: 8820–8824

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Breviario, D. (2000). Tubulin Genes and Promotors. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22300-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22300-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22302-4

  • Online ISBN: 978-3-662-22300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics