Pseudoprimes, Poker and Remote Coin Tossing

  • Manfred R. Schroeder

Abstract

In this chapter we take a closer look at numbers that are not primes, but are tantalizingly close to primes in some respects. Of course, a given number n > 1 is either prime or composite — in other words, n is either “pregnant” with factors or not; there is no third alternative. But nevertheless, it makes sense to define and, as we do in this chapter, discuss such odd entities as pseudoprimes, absolute (or universal) pseudoprimes and strong pseudoprimes. When talking about extremely large numbers, pseudoprimality is sometimes the only evidence we can go by.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 19.1
    R. Morris: On the converse of Fermat’s theorem. Comp. Sci. Tech. Rep. to be published.Google Scholar
  2. 19.2
    C. Pomerance: Recent developments in primality testing. Math. Intelligencer 3, 97–105 (1981)MathSciNetMATHCrossRefGoogle Scholar
  3. 19.3
    A. J. van der Poorten, A. Rotkiewicz: On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc. 29, 316–321 (1980)MATHCrossRefGoogle Scholar
  4. 19.4
    A. Rotkiewicz: On Euler Lehmer pseudoprimes and strong pseudoprimes with parameters L, Q in arithmetic progressions. Math. Comp. 39, 239–247 (1982)MathSciNetMATHGoogle Scholar
  5. 19.5
    S. Goldwasser, S. Micali: “Probabilistic Encryption and How To Play Mental Poker,” in Proceedings of the 4th ACM Symposium on the Theory of Computing (Assoc. Comp. Machinery, New York 1982 ) pp. 365–377Google Scholar
  6. 19.6
    S. Micali (personal communication)Google Scholar
  7. 19.7
    A. Shamir, R. L. Rivest, L. M. Adleman: “Mental Poker,” in The Mathematical Gardener, ed. by D. Klarner ( Prindle Weber Schmidt, Boston 1981 ) pp. 37–43CrossRefGoogle Scholar
  8. 19.8
    S. S. Wagstaff: Large Carmichael numbers. Math. J. Okayama Univ. 22, 33–41 (1980)MathSciNetMATHGoogle Scholar
  9. 19.9
    M. O. Rabin: Probabilistic algorithm for testing primality. J. Number Theory 12, 128–138 (1980)MathSciNetMATHCrossRefGoogle Scholar
  10. 19.10
    C. F. Gauss: Disquisitiones Arithmeticae [English transl. by A. A. Clarke, Yale University Press, New Haven 1966 ]Google Scholar
  11. 19.11
    J. D. Dixon: Asymptotically fast factorization of integers. Math. Comp. 36, 255–260 (1981)MathSciNetMATHCrossRefGoogle Scholar
  12. 19.12
    E. Lucas: Théorie des Nombres ( Blanchard, Paris 1961 )MATHGoogle Scholar
  13. 19.13
    J. Brillhart, D. H. Lehmer, J. L. Selfridge: New primality criteria and factorizations of 2m ± 1. Math. Comp. 29, 620–647 (1975)MathSciNetMATHGoogle Scholar
  14. 19.14
    L. M. Adleman, C. Pomerance, R. S. Rumely: On distinguishing prime numbers from composite numbers (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Manfred R. Schroeder
    • 1
    • 2
  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenFed. Rep. of Germany
  2. 2.Acoustics Speech and Mechanics ResearchBell LaboratoriesMurray HillUSA

Personalised recommendations