Skip to main content

Treatment of Opiate Withdrawal

  • Chapter
  • 74 Accesses

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

There are a variety of procedures for opiate detoxification and treatment of opiate withdrawal, and these fall into two major classes: opiates and nonopiates. Opiates include the use of methadone, a long-acting oral analogue, and buprenorphine, a mixed agonist/antagonist. Nonopiates include clonidine (Catapres®).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gelenberg AJ, Bassuk EL, Schoonover SC. The Practitioner’s Guide to Psychoactive Drugs. 3rd ed. New York: Plenum Publishing Corp., 1991.

    Google Scholar 

  2. Cowan A, Doxey JC, Harry EJR. The animal pharmacology of buprenorphine, an oripavine analgesic agent. Br J Pharmacol 1977; 69: 547–554.

    Google Scholar 

  3. Cowan A. Update on the general pharmacology of buprenorphine. In: Buprenorphine: Combatting Drug Abuse with a Unique Opioid. Wiley-Liss, Inc., 1995: 31–47.

    Google Scholar 

  4. Kosten TR, Kleber HD. Buprenorphine detoxification from opioid dependence: A pilot study. Life Sci 1988; 42: 635–641.

    CAS  Google Scholar 

  5. Cowan A, Lewis JW. Buprenorphine: Combatting Drug Abuse with a Unique Opioid. New York: Wiley Liss, 1995.

    Google Scholar 

  6. Fudala PJ, Jaffe JH, Dax EM et al. Use of buprenorphine in the treatment of opioid addiction. II. Physiologic and behavioral effects of daily and alternate-day administration and abrupt withdrawal. Clin Pharmacol Ther 1990; 47: 525–534.

    PubMed  CAS  Google Scholar 

  7. Lewis JW, Rance MJ, Sanger DJ. The pharmacology and abuse potential of buprenorphine: A new antagonist and analgesic. In: Mello NK, ed. Advances in Substance Abuse—Behavioral and Biological Research (Vol. 3 ). Greenwich, CT: JAI Press, 1983: 103–154.

    Google Scholar 

  8. Tseng LF, Loh HH, Wei ET. Effects of clonidine on morphine withdrawal signs in the rat. Eur J Pharmacol 1975; 30: 93–99.

    PubMed  CAS  Google Scholar 

  9. Washton AM, Resnick RB. Outpatient opiate detoxification with clonidine. J Clin Psychiatry 1982; 43: 39–41.

    PubMed  CAS  Google Scholar 

  10. Charney DS, Heninger GR, Kleber HD. The combined use of clonidine and naltrexone as a rapid, safe and effective treatment of abrupt withdrawal from methadone. Am J Psychiatry 1986; 143: 831–837.

    PubMed  CAS  Google Scholar 

  11. Traub SL. Clonidine for opiate withdrawal. Hospital Formulations 1985; 20: 77–80.

    Google Scholar 

  12. Roques BP, Fournié-Zaluski MC, Soroca E et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 1980; 288: 286–288.

    PubMed  CAS  Google Scholar 

  13. Roques BP, Noble F. Dual inhibitors of enkephalin-degrading enzymes (neutral endopeptidase 24.11 and aminopeptidase N) as potential new medications in the management of pain and opioid addiction. NIDA Technical Review on Discovery of Novel Opioid Medications, RS Rapaka and H Sorer (eds), 1995; 147: 104–145.

    CAS  Google Scholar 

  14. Migaud M, Roques BP, Durieux C. Evidence for a high-affinity uptake system for cholecystokinin octapeptide (CCK-8) in rat cortical synaptosomes. Eur J Neurosci 1995; 7: 1074–1079.

    PubMed  CAS  Google Scholar 

  15. Belluzi JD, Grant N, Garsky V et al. Analgesia induced in vivo by central administration of enkephalin in rat. Nature 1976; 260: 625–626.

    Google Scholar 

  16. Pert C, Pert A, Chang JK et al. [D-Alaz]-Met-enkephalinamide: A potent, long-lasting synthetic pentapeptide analgesic. Science 1976; 194: 330–332.

    PubMed  CAS  Google Scholar 

  17. Fournié-Zaluski MC, Perdrisot R, Gacel G et al. Inhibitory potency of various peptides on enkephalinase activity from mouse striatum. Biochem Biophys Res Commun 1979; 91: 130–135.

    PubMed  Google Scholar 

  18. Malfroy B, Swells JP, Guyon A et al. High-affinity enkephalindegrading peptidase in mouse brain and its enhanced activity following morphine. Nature 1978; 276: 523–526.

    PubMed  CAS  Google Scholar 

  19. Kerr MA, Kenny AJ. The molecular weight and properties of a neutral metallo-endopeptidase from rabbit kidney brush border. Biochem J 1974; 137: 489–495.

    PubMed  CAS  Google Scholar 

  20. Hambrook JM, Morgan BA, Rance MJ et al. Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature 1976; 262: 782–783.

    PubMed  CAS  Google Scholar 

  21. Waksman G, Bouboutou R, Devin J et al. In vitro and in vivo effects of kelatorphan on enkephalin metabolism in rodent brain. Eur J Pharmacol 1985; 117: 233–243.

    PubMed  CAS  Google Scholar 

  22. Waksman G, Hamel E, Fournié-Zaluski MC et al. Autoradiographie comparison of the distribution of the neutral endopeptidase “enkephalinase” and of mu and delta opioid receptors in rat brain. Proc Natl Acad Sci USA 1986; 83: 1523–1527.

    PubMed  CAS  Google Scholar 

  23. Pollard M, Bouthenet ML, Moreau J et al. Detailed immunoautoradiographic mapping system comparison with enkephalins and SP. Neuroscience 1989; 30: 339–376.

    PubMed  CAS  Google Scholar 

  24. Gros C, Solhonne B, Pollard H et al. Immunohistochemical and subcellular studies of aminopeptidase M localization in rat brain: Microvessels and synaptic membranes. In: Holaday JW, Law P-Y, Herz A, eds. Progress in Opioid Research. Rockville: NIDA Research Monograph, DHHS, 1986: 75: 303–306.

    Google Scholar 

  25. Roques BP, Noble F, Daugé V et al. Neutral endopeptidase 24.11: Structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 1993; 45: 87–146.

    PubMed  CAS  Google Scholar 

  26. Fournié-Zaluski MC. Design and evaluation of inhibitors of enkephalin-degrading enzymes. Neurochem Int 1988; 12: 375–382.

    PubMed  Google Scholar 

  27. Roques BP, Lucas-Soroca E, Chaillet P et al. Complete differentiation between “enkephalinase” and angiotensin coverting enzyme inhibition by retro-thiorphan. Proc Natl Acad Sci USA 1983; 80: 3178–3182.

    PubMed  CAS  Google Scholar 

  28. Van Amsterdan JGC, Van Buren KJM, Blod MWH et al. Synthesis of enkephalinase B inhibitors and their activity on isolated enkephalin-degrading enzymes. Eur J Pharmacol 1987; 135: 411–418.

    Google Scholar 

  29. Fournié-Zaluski MC, Chaillet P, Soroca-Lucas E et al. New carboxyalkyl inhibitors of brain enkephalinase: Synthesis, biological activity, and analgesic properties. J Med Chem 1983; 26: 60–65.

    PubMed  Google Scholar 

  30. Sybertz EJ, Chiu PJS, Vemulapalli S et al. SCH 39370, a neutral metalloendopeptidase inhibitor, potentiates biological responses of atrial natriuretic factor and lowers blood pressure in deoxycorticosterone acetate-sodium hypertensive rats. J Pharmacol Exp Ther 1989; 250: 624–631.

    PubMed  CAS  Google Scholar 

  31. Northridge DB, Alabaster CT, Connell JMC et al. Effects of UK 69578: A novel atriopeptidase inhibitor. Lancet 1989; 2: 591–593.

    PubMed  CAS  Google Scholar 

  32. Rich DH. Peptidase inhibitors. In: Sammes PG, Taylor JB, eds. Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study and Therapeutic Application of Chemical Compounds, Vol. 2. Oxford: Pergamon, 1990: 391–441.

    Google Scholar 

  33. Chan WWC. L-leucinethiol, a potent inhibitor of leucine aminopeptidase. Biochem Biophys Res Commun 1983; 116: 297–302.

    PubMed  CAS  Google Scholar 

  34. Roques BP. Physiological role of endogenous peptide effectors studied with peptidase inhibitors. Kidney Int 1988; 34: S27 - S33.

    Google Scholar 

  35. Fournié-Zaluski MC, Coric P, Turcaud S et al. Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation. J Med Chem 1992; 35: 1259–1266.

    Google Scholar 

  36. Gros C, Giros B, Schwartz JC et al. Potent inhibition of cerebral aminopeptidases by carbaphethiol, a parenterally active compound. Neuropeptides 1988; 12: 111–118.

    PubMed  CAS  Google Scholar 

  37. Noble F, Soleihac JM, Soroca-Lucas E et al. Inhibition of the enkephalin-metabolizing enzymes by the first systemically active mixed inhibitor prodrug RB 101 induces potent analgesic responses in mice and rats. J Pharmacol Exp Ther 1992; 261: 181–190.

    PubMed  CAS  Google Scholar 

  38. Patey G, De La Baume S, Schwartz JC et al. Selective protection of methionine enkephalin released from brain slices by thiorphan, a potent enkephalinase inhibitor. Science 1981; 212: 1153–1155.

    PubMed  CAS  Google Scholar 

  39. Alstein M, Bacher E, Vogel Z et al. Protection of enkephalins from enzymatic degradation utilizing selective metal-chelating inhibitors. Eur J Pharmacol 1983; 91: 353–361.

    Google Scholar 

  40. Bourgoin S, Le Bars D, Artaud F et al. Effects of kelatorphan and other peptidase inhibitors on the in vitro and in vivo release of methionine-enkephalin-like material from the rat spinal cord. J Pharmacol Exp Ther 1986; 238: 360–366.

    PubMed  CAS  Google Scholar 

  41. Lecomte JM, Costentin J, Vlaiculescu A et al. Pharmacological properties of acetorphan, a parenterally active enkephalinase inhibitor. J Pharmacol Exp Ther 1986; 237: 937–944.

    PubMed  CAS  Google Scholar 

  42. Fournié-Zaluski MC, Chaillet P, Bouboutou R et al. Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin-degrading enzymes. Eur J Pharmacol 1984; 102: 525–528.

    PubMed  Google Scholar 

  43. Fournié-Zaluski MC, Coulaud A, Bouboutou R et al. New bidentates as full inhibitors of enkephalin-degrading enzymes: Synthesis and analgesic properties. J Med Chem 1985; 28: 1158–1169.

    PubMed  Google Scholar 

  44. Xie J, Soleilhac JM, Schmidt C et al. New kelatorphan-related inhibitors of enkephalin metabolism improved antinociceptive properties. J Med Chem 1989; 32: 1497–1503.

    PubMed  CAS  Google Scholar 

  45. Schmidt C, Peyroux J, Noble F et al. Analgesic responses elicited by endogenous enkephalins (protected by mixed peptidase inhibitors) in a variety of morphine-sensitive noxious tests. Eur J Pharmacol 1991; 192: 253–262.

    PubMed  CAS  Google Scholar 

  46. Fournié-Zaluski MC, Coric P, Turcaud S et al. “Mixed inhibitorProdrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem 1992; 35: 2473–2481.

    PubMed  Google Scholar 

  47. Ruiz-Gayo M, Baamonde A, Turcaud S et al. In vivo occupation of mouse brain opioid receptors by endogenous enkephalins: Blockade of enkephalin-degrading enzymes by RB 101 inhibits [3H] diprenorphine binding. Brain Res 1992; 571: 306–312.

    PubMed  CAS  Google Scholar 

  48. Baamonde A, Daugé V, Ruiz-Gayo M et al. Antidepressant-type effects of endogenous enkephalins protected by systemic RB 101 are mediated by opioid delta and dopamine DI receptor stimulation. Eur J Pharmacol 1992; 216: 157–166.

    PubMed  CAS  Google Scholar 

  49. Smadja C, Maldonado R, Turcaud S et al. Opposite role of CCK-A and CCK-B receptors in the modulation of endogenous enkepha-lins’ antidepressant-like effects. Psychopharmacology 1995; 120: 400–408.

    PubMed  CAS  Google Scholar 

  50. Maldonado R, Feger J, Fournié-Zaluski MC et al. Differences in physical dependence induced by selective mu or delta opioid agonists and by endogenous enkephalins protected by peptidase inhibitors. Brain Res 1990; 520: 247–254.

    PubMed  CAS  Google Scholar 

  51. Noble F, Coric P, Fournié-Zaluski MC et al. Lack of physical dependence in mice after repeated systemic administration of the mixed inhibitor prodrug of enkephalin-degrading enzymes RB 101. Eur J Pharmacol 1992; 223: 91–96.

    PubMed  CAS  Google Scholar 

  52. Noble F, Turcaud S, Fournié-Zaluski MC et al. Repeated systemic administration of the mixed inhibitor of enkephalin-degrading enzyme, RB 101, does not induce either antinociceptive tolerance or cross-tolerance with morphine. Eur J Pharmacol 1992; 223: 83–89.

    PubMed  CAS  Google Scholar 

  53. Valverde O, Blommaert A, Turcaud S et al. The CCK-B antagonist PD-134,308 induces a long-lasting potentiation of antinociceptive responses mediated by endogenous enkaphalins in the rat tail-flick test. Eur J Pharmacol 1995; 286: 79–93.

    PubMed  CAS  Google Scholar 

  54. Williams JT, Christie MJ, North RA et al. Potentiation of enkephalin action by peptidase inhibitors in rat locus coeruleus in vitro. J Pharmacol Exp Ther 1987; 243: 397–401.

    PubMed  CAS  Google Scholar 

  55. De Witte PH, Heidbreder CH, Roques BP. Kelatorphan, a potent enkephalinase inhibitor, and opioid receptor agonists DAGO and DTLET differentially modulate self-stimulation behavior depending on the site of administration. Neuropharmacology 1989; 28: 667–676.

    PubMed  Google Scholar 

  56. Maldonado R, Fournié-Zaluski MC, Roques BP. Attenuation of the morphine withdrawal syndrome by inhibition of the endogenous enkephalin catabolism into the periaqueductal gray matter. Naunyn Schmiedebergs Arch Pharmacol 1992; 345: 466–472.

    PubMed  CAS  Google Scholar 

  57. Bozarth MA. Physical dependence produced by central morphine infusions: An anatomical mapping study. Neurosci Biobehav Rev 1994; 18: 373–383.

    CAS  Google Scholar 

  58. Tseng LF, Loh HH, Li CH. 13-endorphin: Cross-tolerance to and cross-physical dependence on morphine. Proc Natl Acad Sci USA 1976; 73: 4187–4189.

    PubMed  CAS  Google Scholar 

  59. Wen HL, Ho WKK. Suppression of withdrawal symptoms by dynorphin in heroin addicts. Eur J Pharmacol 1982; 82: 183–186.

    PubMed  CAS  Google Scholar 

  60. Wen HL, Ho WKK, Wen PYC. Comparison of the effectiveness of different opioid peptides in suppressing heroin withdrawal. Eur J Pharmacol 1984; 100: 155–163.

    PubMed  CAS  Google Scholar 

  61. Bläsig J, Herz A. Tolerance and dependence induced by morphine-like pituitary peptides in rat. Naunyn Schmiedebergs Arch Pharmacol 1976; 294: 297–300.

    PubMed  Google Scholar 

  62. Gmerek DE, Katz JL, France CP et al. Systemic and intracerebroventricular effects of opioid peptides in withdrawn morphine-dependent rhesus monkeys. Life Sci 1983; 33 (Suppl. I): 361–369.

    PubMed  CAS  Google Scholar 

  63. Pinsky C, Dua AK, Labella FS. Peptidase inhibitors reduce opiate narcotic withdrawal signs, including seizure activity, in rats. Brain Res 1982; 243: 301–307.

    PubMed  CAS  Google Scholar 

  64. Dzoljic MR, Rademaker B, Poel-Heisterkamp AL et al. Enkephalinase inhibition suppresses naloxone-induced jumpint in morphine-dependent mice. Arch Int Pharmacodyn Ther 1986; 283: 222–228.

    PubMed  CAS  Google Scholar 

  65. Haffmans J, Dzoljic MR. Inhibition of enkephalinase activity attenuates naloxone-precipitated withdrawal symptoms. Gen Pharmacol 1987; 18: 103–105.

    PubMed  CAS  Google Scholar 

  66. Livingston SJ, Sewell RDE, Rooney KF et al. Amelioration of naloxone-precipitated opioid withdrawal symptoms by peripheral administration of the enkephalinase inhibitor acetorphan. Psychopharmacology 1988; 94: 540–544.

    PubMed  CAS  Google Scholar 

  67. Dzoljic MR, Bokszanska A, Korenhof AM et al. The effects of orally active enkephalinase inhibitors on morphine withdrawal syndrome. NeuroReport 1992; 3: 637–640.

    PubMed  CAS  Google Scholar 

  68. Maldonado R, Daugé V, Callebert J et al. Comparison of selective and complete inhibitors of enkephalin-degrading enzymes on morphine withdrawal syndrome. Eur J Pharmacol 1989; 165: 199–207.

    PubMed  CAS  Google Scholar 

  69. Maldonado R, Stinus L, Gold LH et al. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther 1992; 261: 669–677.

    PubMed  CAS  Google Scholar 

  70. Maldonado R, Valverde O, Ducos B et al. Inhibition of morphine withdrawal syndrome by the association of a peptidase inhibitor and a CCK-B antagonist. Br J Pharmacol 1995; 114: 1031–1039.

    PubMed  CAS  Google Scholar 

  71. Maldonado R, Derrien M, Noble F et al. Association of a peptidase inhibitor and a CCK-B antagonist strongly potentiates antinociception mediated by endogenous enkephalins. NeuroReport 1993; 7: 947–950.

    Google Scholar 

  72. Valverde O, Maldonado R, Fournié-Zaluski MC et al. CCK-B antagonists strongly potentiate antinociception mediated by endogenous enkephalins. J Pharmacol Exp Ther 1994; 270: 77–88.

    PubMed  CAS  Google Scholar 

  73. Hughes J, Boden P, Costall B et al. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci USA 1990; 87: 6728–6732.

    PubMed  CAS  Google Scholar 

  74. Millington WR, Mueller GP, Lavigne GJ. Cholecystokinin type A and type B receptor antagonists produce opposing effects on cholecystokinin-stimulated beta-endorphin secretion from the rat pituitary. J Pharmacol Exp Ther 1992; 261: 454–461.

    PubMed  CAS  Google Scholar 

  75. Ruiz-Gayo M, Durieux C, Fournié-Zaluski MC et al. Stimulation of delta opioid receptors reduces the in vivo binding of the CCK-B-selective agonist [3H]pBC 264: Evidence for a physiological regulation of CCKergic systems by endogenous enkephalins. J Neurochem 1992; 59: 1805–1811.

    PubMed  CAS  Google Scholar 

  76. Cowan A, Zhu XZ, Mosberg HI et al. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther 1988; 246: 950–955.

    PubMed  CAS  Google Scholar 

  77. Maldonado R, Negus S, Koob GF. Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta-and kappa-selective opioid antagonists. Neuropharmacology 1992; 31: 1231–1241.

    PubMed  CAS  Google Scholar 

  78. Ruiz F, Fournié-Zaluski MC, Roques BP et al. The inhibitor of enkephalin catabolism, RB 101, induces a similar decrease in spontaneous morphine abstinence syndrome than methadone; First European Congress of Pharmacology, Milan. Pharmacol Res 1995; 31 (Suppl): 113.

    Google Scholar 

  79. Hartmann F, Poirier MF, Bourdel MC et al. Comparison of acetorphan with clonidine for opiate withdrawal symptoms. Am J Psychiatry 1991; 148: 627–629.

    PubMed  CAS  Google Scholar 

  80. Hardy JD, Fabian LW, Turner MD. Electrical anesthesia for major surgery. JAMA 1961; 175: 599–601.

    PubMed  CAS  Google Scholar 

  81. Smith RH, Goodwin G, Fowler E et al. Electronarcosis produced by a combination of direct and alternate current. A preliminary study: 1. Apparatus and electrodes. Anesthesiology 1961; 22: 163–166.

    Google Scholar 

  82. Smith RH. Electrical Anesthesia. Springfield: C.C.Thomas, 1963.

    Google Scholar 

  83. Smith RH. Electroanesthesia. Anesth Analg 1971; 34: 60–72.

    CAS  Google Scholar 

  84. Herin RA. Electroanesthesia: A review of the literature (1819–1965). Activ New Super 1968; 10: 439–454.

    CAS  Google Scholar 

  85. Kuzin MI, Satchov VI. Some results of fifteen years of electroanesthesia research in surgical clinic and experiment. In: Limoge A, Cara M, Debras C, eds. Electrotherapeutic Sleep and Electroanesthesia. Paris: Masson, 1978: 93–95.

    Google Scholar 

  86. Limoge A. In: Johnson RM, ed. An Introduction to Electroanesthesia. Baltimore: University Park Press, 1975: 1–121.

    Google Scholar 

  87. Limoge A, Boisgontier MT. Characteristic of electric currents used in human anesthesiology. In: Ribak B, ed. Advanced Technology. Germantown, PA: Sythoff and Noordhoff, 1979: 437–446.

    Google Scholar 

  88. Limoge A, Louville Y, Barritault L et al. Electrical anesthesia. In: Spierdijk J, Feldman SA, Mattie H et al, eds. Developments in Drugs Used in Anesthesia. Boston: Leiden University Press, 1981: 121–134.

    Google Scholar 

  89. Prieur G, Dubois F, Barritault L et al. Approche mathématique de l’action biologique des courants de Limoge. J Biophysique Mécanique 1985; 9: 67–74.

    Google Scholar 

  90. Cara M, Cara-Beurton M, Debras C et al. Essais d’anesthésie électrique chez l’homme. Ann Anesth Franç 1972; 13: 521–526.

    Google Scholar 

  91. Kucera H, Kubista E, Haghghi B et al. The effects of electroanalgesia in obstetrics (technique by Limoge). In: Limoge A, Cara M, Debras C, eds. Electrotherapeutic Sleep and Electroanesthesia. Paris: Masson, 1978: 73–77.

    Google Scholar 

  92. Bourdallé-Badie C, Gardien P, Laforge E et al. Les anesthésies de longue durée. Anesth Annual Réan 1980; 37: 523–526.

    Google Scholar 

  93. Champagne C, Papiernik E, Therry JP et al. Electrostimulation cérébrale transcutanée pour les courants de Limoge au cours de l’accouchement. Ann Fr Anesth 1984; 3: 405–413.

    CAS  Google Scholar 

  94. Coeytaux R, Atinault A, Cazalaa JB et al. Etude à double insu de l’efficacité de l’anesthésie électromédicamenteuse: A propos de 50 adénomectomies prostatiques. Agressologie 1977; 18: 213–215.

    PubMed  CAS  Google Scholar 

  95. Vigreux G, Onimus R, Linoge A et al. Utilisation clinique des courants impulsionnels de haute fréquence en anesthésie générale chez l’homme. Ann Anesth Franç 1978; 19: 455–482.

    CAS  Google Scholar 

  96. Stanley TH, Cazalaa JA, Atinault A et al. Transcutaneous cranial electrical stimulation decreases narcotic requirements during neuroleptic anesthesia and operation in man. Anesth Analg 1982; 61: 863–866.

    PubMed  CAS  Google Scholar 

  97. Stanley TH, Cazalaa JA, Limoge A et al. Transcutaneous cranial electrical stimulation increases the potency of nitrous oxide in humans. Anesthesiology 1982; 57: 293–297.

    PubMed  CAS  Google Scholar 

  98. Daulouéde JP, Daubech JF, Bourdallé-Badie C et al. Une nouvelle méthode de sevrage des toxicomanes par utilisation du courant de Limoge. Ann Med Psychol 1980; 138: 359–370.

    Google Scholar 

  99. Ellison F, Ellison W, Daulouéde JP et al. Opiate withdrawal and electrostimulation double-blind experiments. Encéphale 1987; 13: 225–229.

    PubMed  CAS  Google Scholar 

  100. Stinus L, Auriacombe M, Tignol J et al. Transcranial electrical stimulation with high frequency intermittent current (Limoge’s) potentiates opiate-induced analgesia. Pain 1990; 42: 351–363.

    PubMed  CAS  Google Scholar 

  101. Auriacombe M, Tignol J, Le Moal M et al. Transcutaneous electrical stimulation with limoge current potentiates morphine analgesia and attenuates opiate abstinence syndrome. Biol Psychiatry 1990; 28: 650–656.

    PubMed  CAS  Google Scholar 

  102. Mantz J, Azerad J, Limoge A et al. Transcranial electrical stimulation with Limoge’s current decreases halothane requirements in rats. Anesthesiology 1992; 76: 253–260.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maldonado, R., Stinus, L., Koob, G.F. (1996). Treatment of Opiate Withdrawal. In: Neurobiological Mechanisms of Opiate Withdrawal. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22218-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22218-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22220-1

  • Online ISBN: 978-3-662-22218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics