Skip to main content

Role of ATP-Sensitive Potassium Channels in Myocardial Preconditioning

  • Chapter
Myocardial Preconditioning

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

The past few years have seen an explosive growth of research on the mechanism of myocardial preconditioning. There has also recently been an increased interest in the role of ATP-sensitive potassium channels (KATP) in the pathogenesis of myocardial ischemia. These two originally distinct lines of investigation intersected with the publication by Gross and colleagues showing that preconditioning in dogs can be abolished by the KATP blocker glyburide (glibenclamide).1 In this chapter I will describe the sequence of studies which led to the KATP hypothesis for preconditioning and I will present these data in a manner which will inform the reader of the thought processes leading to our current understanding (whether right or wrong) of the role of KATP in mediating myocardial preconditioning. First, I will describe what is known about cardiac KATP. I will then review the data describing the pharmacology of the cardioprotective effects of KATP openers. This will be done to show that the pharmacological profile of cardioprotection by KATP openers is consistent in many respects to that observed for preconditioning (preconditioning mimetic). I will then describe the studies showing the effects of KATP blockers on preconditioning. It turns out that the order in which the data are presented in this chapter are also generally in chronological order, therefore giving the reader an historical perspective of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992; 70: 223–233.

    Article  PubMed  CAS  Google Scholar 

  2. Noma A. ATP-regulated K. channels in cardiac muscle. Nature 1983; 305: 147–148.

    Article  PubMed  CAS  Google Scholar 

  3. Spruce AE, Standen NB, Stanfield PR. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 1985; 316: 736–738.

    Article  PubMed  CAS  Google Scholar 

  4. de Weille J, Schmid-Antomarchi H, Fosset M et al. ATP-senstive K’ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci USA 1988; 85: 1312–1316.

    Article  PubMed  Google Scholar 

  5. Treherne JM, Ashford MLJ. The regional distribution of sulfphonylurea binding sites in rat brain. Neuroscience 1991; 40: 523–531.

    Article  PubMed  CAS  Google Scholar 

  6. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Ann Rev Pharmacol Toxicol 1993; 33: 597–637.

    Article  CAS  Google Scholar 

  7. Light PE, Allen BG, Walsh MP et al. Regulation of adenosine triphosphate-sensitive potassium channels from rabbit ventricular myocytes by protein kinase C and type 2A protein phosphatase. Biochemistry 1995; 34: 7252–7257.

    Article  PubMed  CAS  Google Scholar 

  8. Ribalet B, Ciani S, Eddlestone GT. ATP mediates both activation and inhibition of KAm channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines. J Gen Physiol 1989; 94: 693–717.

    Article  PubMed  CAS  Google Scholar 

  9. de Weille J, Schmid-Antomarchi H, Fosset M et al. Regulation of ATP-sensitive K’ channels in insulinoma cells: activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sci USA 1989; 86: 2971–2975.

    Article  PubMed  Google Scholar 

  10. Kirsch CE, Codina J, Birnbaumer L et al. Coupling of ATP-sensitive K. channels to A, receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 259: H820–826.

    PubMed  CAS  Google Scholar 

  11. Ito K, Kanno T, Suzuki K et al. Effects of cromkalim on the contraction and the membrane potential of the circular smooth muscle of guinea-pig stomach. Br J Pharmacol 1992; 105: 335–340.

    Article  PubMed  CAS  Google Scholar 

  12. Quast U, Cook NS. Moving together: K. channel openers and ATP-sensitive K’ channels. Trends Pharmacol Sci 1989; 10: 431–435.

    Article  PubMed  CAS  Google Scholar 

  13. Cook NS. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol 1988; 9: 21–28.

    Article  CAS  Google Scholar 

  14. Venkatesh N, Lamp ST, Weiss JN. Sulfonylureas, ATP-senstive K. channels, and cellular K. loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Circ Res 1991; 69: 623–367.

    Article  PubMed  CAS  Google Scholar 

  15. Kantor PF, Coetzee WA, Carmeliet EE et al. Reduction of ischemic K’ loss and arrhythmias in rat hearts. Effect of glybenclamide, a sulfonylurea. Circ Res 1990; 66: 478–485.

    Article  PubMed  CAS  Google Scholar 

  16. Wilde AAM, Escande D, Schumacher CA et al. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Circ Res 1990; 67: 835–843.

    Article  PubMed  CAS  Google Scholar 

  17. Kubota I, Yamaki M, Shibata T et al. Role of ATP-sensitive K. channel on ECG ST segment elevation during a bout of myocardia ischemia. A study on epicardial mapping in dogs. Circulation 1993; 88: 1845–1851.

    Article  PubMed  CAS  Google Scholar 

  18. Gross GJ, Peiper GM, Warltier DC. Comparative effects of nicorandil, nitroglycerin, nicotinic acid, and SG-86 on the metabolic status and functional recovery of the ischemic-reperfused myocardium. J Cardio•,asc Pharmacol 1987; 10 (Suppl 8): S76–84.

    CAS  Google Scholar 

  19. Pieper GM, Gross GJ. Salutary action of nicorandil, a new antianginal drug, on myocardial metabolism during ischemia and on postischemic function in a canine preparation of brief, repetitive coronary artery occlu- sion: comparison with isosorbide dinitrate. Circulation 1987; 76: 916–928.

    Article  PubMed  CAS  Google Scholar 

  20. Grover GJ, McCullough JR, Henry DE et al. Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 1989; 251: 98–104.

    PubMed  CAS  Google Scholar 

  21. Grover GJ, Sleph PG, Dzwonczyk S. Pharmacologic profile of cromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol 1990; 16: 853–864.

    Article  PubMed  CAS  Google Scholar 

  22. Sargent CA, Dzwonczyk S,Sleph PG et al. Cardioprotective effects of the cyanoguanidine potassium channel opener P-1075. J Cardiovasc Pharmacol 1993; 22: 564–570.

    Article  PubMed  CAS  Google Scholar 

  23. Grover GJ, Dzwonczyk S, Sleph PG. Reduction of ischemic damage in isolated rat hearts by the potassium channel opener RP 52891. Eur J Pharmacol 1990; 191: 11–19.

    Article  PubMed  CAS  Google Scholar 

  24. Sargent CA, Dzwonczyk S, Grover GJ. Effect of the potassium channel opener EMD 56431 on globally ischemic rat hearts. Pharmacology 1992; 45: 260–268.

    Article  PubMed  CAS  Google Scholar 

  25. Grover GJ, Dzwonczyk S, Parham CS et al. The protective effects of cromaklim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther 1990; 4: 465–74.

    Article  PubMed  CAS  Google Scholar 

  26. Cole WC, McPherson CD, Sontag D. ATP-regulated channels protect the myocardium against ischemia/reperfusion damage. Circ Res 1991; 69: 571–581.

    Article  PubMed  CAS  Google Scholar 

  27. Galifianes M, Shattock MJ, Hearse DJ. Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia. Cardiovasc Res 1992; 26: 1063–1068.

    Article  Google Scholar 

  28. Ohta H, Jinno Y, Harada K et al. Cardioprotective effects of KRN2391 and nicorandil on ischemic dysfunction in perfused rat heart. Eur J Pharmacol 1991; 204: 171–177.

    Article  PubMed  CAS  Google Scholar 

  29. McCullough JR, Normandin DE, Conder ML et al. Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res 1991; 69: 949–958.

    Article  PubMed  CAS  Google Scholar 

  30. Grover GJ, D’Alonzo J, Sleph PG et al. The cardioprotective and electrophysiologic effects of cromakalim are attenuated by meclofenamate through a cyclooxygenase-independent mechanism. J Pharmacol Exp Ther 1994; 269: 536–540.

    PubMed  CAS  Google Scholar 

  31. Philipsone LH, Steiner DF. Pas de deux or more: the sulfonylurea receptor and K’ channels. Science 1995; 268: 372–373.

    Article  Google Scholar 

  32. Aguilar-Bryan L, Nichols CG, Wechsler SW et al. Cloning of the beta-cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science 1995; 268: 423–425.

    Article  PubMed  CAS  Google Scholar 

  33. Venkatesh N, Lamp ST, Weiss JN. Sulfonylureas, ATP-sensitive K’ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Circ Res 1991; 623–629.

    Google Scholar 

  34. Mizumura T, Gross GJ. The cardioprotective effect of nicorandil, a KATP channel opener nitrate, is blocked by glyburide in dogs. J Mol Cell Cardiol 1995; 27: A24.

    Google Scholar 

  35. Grover GJ, Sleph PG, Parham CS. Nicorandil improves postischemic contractile function independently of direct myocardial effects. J Cardiovasc Pharmacol 1990; 15: 698–705.

    Article  PubMed  CAS  Google Scholar 

  36. Auchampach JA, Maruyama M, Cavero I et al. The new K. channel opener aprikalim (RP 52891) reduces experimental infarct size in dogs in the absence of hemodynamic changes. J Pharmacol Exp Ther 1991; 259: 961–967.

    PubMed  CAS  Google Scholar 

  37. Auchampach JA, Maruyama M, Cavero I et al. Pharmacologic evidence for a role of ATP-dependent potassium channels in myocardial stunning. J Pharmacol Exp Ther 1992; 86: 311–319.

    CAS  Google Scholar 

  38. Rohmann S, Weygandt H, Schelling P et al. Involvement of ATP-sensitive potassium channels in preconditioning protection. Basic Res Cardiol 1994; 89: 563–576.

    Article  PubMed  CAS  Google Scholar 

  39. Imai N, Liang C, Stone CK et al. Comparative effects of nitroprusside and pinacidil on myocardial blood flow and infarct size in awake dogs with acute myocardial infarction. Circulation 1988; 77: 705–711.

    Article  PubMed  CAS  Google Scholar 

  40. Thornton JD, Thornton CS, Sterling KL et al. Blockade of ATP-sensitive channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res 1993; 72: 44–49.

    Article  PubMed  CAS  Google Scholar 

  41. Kitzen JM, McCallum JD, Harvey C et al. Potassium channel activators cromakalim and celikalim (WAY-120,491) fail to decrease myocardial infarct size in the anesthetized canine. Pharmacology 1992; 45: 71–82.

    Article  PubMed  CAS  Google Scholar 

  42. Grover GJ, Newburger J, Sleph PG et al. Cardioprotective effects of the potassium channel opener cromakalim: stereoselectivity and effects on myocardial adenine nucleotides. J Pharmacol Exp Ther 1991; 257: 156–162.

    PubMed  CAS  Google Scholar 

  43. McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive potassium channels involves high-energy phosphate preservation. Am J Physiol 1993; 265: H1809 - H1818.

    PubMed  CAS  Google Scholar 

  44. Behling RW, Malone HJ. KATP-channel openers protect against increaed cytosolic calcium during ischemia and reperfusion. J Mol Cell Cardiol 1995; 27: 1804–1817.

    Article  Google Scholar 

  45. Yao Z, Gross GJ. Effects of the KATP opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994; 89: 1769–1775.

    Article  PubMed  CAS  Google Scholar 

  46. Grover GJ, D’Alonzo AJ, Parham CS. Cardioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol 1995; 26: 145–152.

    Article  PubMed  CAS  Google Scholar 

  47. Grover GJ, D’Alonzo AJ, Hess TA et al. Glyburide-reversible cardioprotective effect of BMS-180448 is independent of action potential shortening in guinea pig hearts. Cardiovasc Res (In Press).

    Google Scholar 

  48. Atwal KS, Grover GJ, Ahmed S et al. Cardioselective anti-ischemic ATP-sensitive potassium channel openers. J Med Chem 1993; 36: 3971–3974.

    Article  PubMed  CAS  Google Scholar 

  49. Inoue I, Nagase H, Kishi K et al. ATP-sensitive K’ channel in the mitochondria, inner membrane. Nature 1991; 352: 244–7.

    Article  PubMed  CAS  Google Scholar 

  50. Paucek P, Mironova G, Mandi F et al. Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K’ channel from rat liver and beef heart mitochondria. J Biol Chem 1992; 36: 26062–26069.

    Google Scholar 

  51. Paucek P, Yarov-Yarovoy V, Sun X et al. Physiological and pharmacological activators of the mitochondrial KATP channel. Biophys J 1995; 68: A145 (Abstract).

    Google Scholar 

  52. Jennings RB, Murry CE, Reimer KA. Preconditioning myocardium with ischemia. Cardiovasc Drug Ther 1991; 5: 933–938.

    Article  CAS  Google Scholar 

  53. Escande D, Thuringer D, Le Guern S et al. Potassium channel openers act through an activation of ATP-sensitive K’ channels in guinea-pig cardiac myocytes. Plugers Arch 1989; 414: 669–675.

    Article  CAS  Google Scholar 

  54. Yao Z, Gross GJ. Activation of ATP-sensitive potassium channels lowers threshold for ischemic preconditioning in dogs. Am J Physiol 1994; 267: H1888 - H1894.

    PubMed  CAS  Google Scholar 

  55. Auchampach JA, Grover GJ, Gross GJ. Blockade of ischemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 1992; 26: 1054–1062.

    Article  PubMed  CAS  Google Scholar 

  56. Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A,-receptors. Circulation 1992; 86: 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  57. Schulz R, Rose J, Heusch G. Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine. Am J Physiol 1994; 267: H1341 - H1352.

    PubMed  CAS  Google Scholar 

  58. Toombs CF, Moore TL, Shebuski RJ. Limitation of infarct size in the rabbit by ischemic preconditioning is reversible with glibenclamide. Cardiovasc Res 1993; 27: 617–622.

    Article  PubMed  CAS  Google Scholar 

  59. Thornton JD, Thornton CS, Sterlin DL et al. Blockade of ATP-sensitive potassium channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res 1993; 72: 44–49.

    Article  PubMed  CAS  Google Scholar 

  60. Walsh RS, Tsuchida A, Daly JJF et al. Ketamine-xylazine anesthesia permits a KATP channel antagonist to attenuate preconditiong in rabbit myocardium. Cardiovasc Res 1994; 28: 1337–1341.

    Article  PubMed  CAS  Google Scholar 

  61. Tan HL, Mazon P, Verberne HJ et al. Ischemic preconditioning delays ischemia induced cellular uncoupling in rabbit myocardium by activation of ATP-sensitive potassium channels. Cardiovasc Res 1993; 27: 644–651.

    Article  PubMed  CAS  Google Scholar 

  62. Tomai F, Crea F, Gaspardone A et al. Ischemic preconditioning during coronary angioplasy is prevented by glibenclamide, a selective ATP-sensitive K’ channel blocker. Circulation 1994; 90: 700–705.

    Article  PubMed  CAS  Google Scholar 

  63. Speechly-Dick ME, Grover GJ, Yellon DM. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent potassium channel? Studies of contractile function in an in vitro model. Circ Res (In Press).

    Google Scholar 

  64. Lu H Remeysen P, De Clerck F. The protection by ischemic preconditioning against myocardial ischemia and reperfusion induced arrhythmias is not mediated by ATP-sensitive potassium channels in rats. Coron Artery Dis 1993; 4: 649–654.

    Article  PubMed  Google Scholar 

  65. Vegh A, Papp JG, Szekeres L et al. Are ATP sensitive potassium channels involved in the pronounced antiarrhythmic effects of preconditioning? Cardiovasc Res 1993; 27: 638–643.

    Article  PubMed  CAS  Google Scholar 

  66. Vegh A, Szekeres L, Parratt JR. Protective effects of preconditioning of the ischaemic myocardium involve cyclo-oxygenase products. Cardiovasc Res 1990; 24: 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  67. Li Y, Kloner RA. The cardioprotective effects of ischemic ‘preconditioning’ are not mediated by adenosine receptors in rat hearts. Circulation 1993; 87: 1642–1648.

    Article  PubMed  CAS  Google Scholar 

  68. Fralix TA, Steenbergen C, London RE et al. Glibenclamide does not abolish the protective effect of preconditioning on stunning in the isolated perfused rat heart. Cardiovasc Res 1993; 27: 630–637.

    Article  PubMed  CAS  Google Scholar 

  69. Grover GJ, Dzwonczyk S, Sleph PG et al. The ATP-sensitive potassium channel blocker glibenclamide (glyburide) does not abolish preconditioning in isolated ischemic rat hearts. J Pharmacol Exp Ther 1993; 265: 559–564.

    PubMed  CAS  Google Scholar 

  70. Grover, GJ, Murray HN, Baird A et al. The KATP blocker sodium 5-hydroxydecanoate does not abolish preconditioning in isolated rat hearts. Eur J Pharmacol. 1995; 277: 271–274.

    Article  PubMed  CAS  Google Scholar 

  71. Banerjee A, Locke-Winter C, Rogers KB et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha,-adrenergic mechanism. Circ Res 1993; 73: 656–670.

    Article  PubMed  CAS  Google Scholar 

  72. Heurteaux C, Lauritzen I, Widmann C et al. Essential role of adenosine, adenosine A, receptors, and ATP-sensitive K’ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 1995; 92: 4666–4670.

    Article  PubMed  CAS  Google Scholar 

  73. Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res 1993; 27: 3–8.

    Article  PubMed  CAS  Google Scholar 

  74. Kirsch CE, Codina J, Birnbaumer L et al. Coupling of ATP-sensitive K’ channels to Al receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 258: H820 - H826.

    Google Scholar 

  75. Van Winkle DM, Chien GL, Wolff RA et al. Cardioprotection provided by adenosine receptor activation is abolished by blockade of the KATP channel. Am J Physiol 1994; 266: H829 - H839.

    PubMed  Google Scholar 

  76. Toombs CF, McGee DS, Johnston WE et al. Protection from ischaemicreperfusion injury with adenosine treatment is reversed by inhibition of ATP-sensitive potassium channels. Cardiovasc Res 1993; 27: 623–629.

    Article  PubMed  CAS  Google Scholar 

  77. Auchampach JA, Gross GJ. Adenosine Al receptors, KATP channels and ischemic preconditioning in dogs. Am J Physiol 1993; 264: H1327–1336.

    PubMed  CAS  Google Scholar 

  78. Tsuchida A, Walsh RS, Downey J. Protection by the ATP-sensitive K’ opener pinacidil can be blocked with an adenosine receptor antagonist. Circulation 1993; 88: I632 (Abstract).

    Google Scholar 

  79. Armstrong SC, Liu G, Downey J et al. KATP channels and preconditioning of rabbit cardiomyocytes. J Mol Cell Cardiol 1995; 27: A23 (Abstract).

    Article  Google Scholar 

  80. Kitakaze M, Minamino T, Node K et al. Opening of K. channels mimics the infarct size limiting effect of ischaemic preconditioning: role of activation of ectosolic 5’-nucleotidase. Eur Heart J 1994; 15 (Suppl): 482 (Abstract).

    Article  Google Scholar 

  81. Gross GJ, Sleph PG, Grover PG. Cardioprotective effects of KATP openers occur independently of adenosine AI receptor activation. J Mol Cell Cardiol 1995; 27: A24 (Abstract).

    Google Scholar 

  82. Freyss Beguin M, Simon J et al. Effect of glibenclamide on the metabolism of fatty acids in cultures of new born rat heart cells under normoxic and hypoxic conditions. Prostaglandins Leukotrienes Essent Fatty Acids 1995; 52: 325–331.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grover, G.J. (1996). Role of ATP-Sensitive Potassium Channels in Myocardial Preconditioning. In: Myocardial Preconditioning. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22206-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22206-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22208-9

  • Online ISBN: 978-3-662-22206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics