Skip to main content

Diversity and Regulation of cAMP-Dependent Protein Kinases

  • Conference paper
Molecular and Cellular Endocrinology of the Testis

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 1))

Abstract

Reversible protein phosphorylation is a key regulatory mechanism in eukaryotic cells. Protein phosphorylation was first demonstrated to regulate the activity of glycogen phosphorylase in response to glucagon (Fischer and Krebs 1955; Sutherland and Wosilait 1955). A heat-stable factor mediating the effect of glucagon on the phosphorylation status of glycogen phosphorylase was next identified as 3’,5’-cyclic adenosine monophosphate (cAMP; Sutherland and Rall 1958), and the concept of cAMP as an intracellular second messenger to a wide range of hormones, neurotransmitters, and other signaling substances was developed (Robinson et al. 1971). The target for cAMP was purified and identified as a cAMP-regulated protein kinase (Walsh et al. 1968), termed cAMP-dependent protein kinase (cAK; EC 2.7.1.37).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beebe SJ, Corbin JD (1986) Cyclic nucleotide-dependent protein kinases. Enzymes 17: 43–111

    Article  CAS  Google Scholar 

  • Beebe SJ, Holloway R, Rannels SR, Corbin JD (1984) Two classes of cAMP analogs which are selective for the two different camp-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J Biol Chem 259: 3539–3547

    PubMed  CAS  Google Scholar 

  • Beebe SJ, fyen O, Sandberg M, Fr¢ysa A, Hansson V, Jahnsen T (1990) Molecular cloning of a tissuespecific protein kinase ( Cy) from human testis — representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol 4: 465–475

    Google Scholar 

  • Beebe SJ, Salomonsky P, Jahnsen T, Li Y (1992) The Cy subunit is a unique isozyme of the cAMP-dependent protein kinase. J Biol Chem 267: 25505–25512

    PubMed  CAS  Google Scholar 

  • Blomhoff HK, Smeland EB, Beiske K, Blomhoff R, Ruud E, Bjoro T, PfeiferOhlsson S, Watt R, Funderud S, Godal T, Ohlsson R (1987) Cyclic AMP-mediated suppression of normal and neoplastic B cell proliferation is associated with regulation of myc and Ha-ras protooncogenes. J Cell Physiol 131: 426–133

    Article  PubMed  CAS  Google Scholar 

  • Boshart M, Weih F, Nichols M, Schutz G (1991) The tissue specific extinguisher locus TSE1 encodes a regulatory subunit of cAMP-dependent protein kinase. Cell 66: 849–859

    Article  PubMed  CAS  Google Scholar 

  • Boynton AL, Whitfield JF (1983) The role of cAMP in cell proliferation: a critical assessment of the evidence. Adv Cyclic Nucl Res 15: 193–294

    CAS  Google Scholar 

  • Bubis J, Vedvick TS, Taylor SS (1987) Antiparallel alignment of the two protomers of the regulatory subunit dimer of cAMP-dependent protein kinase I. J Biol Chem 262: 14961–149667

    Google Scholar 

  • Cadd GG, Uhler MD, Mcknight GS (1990) Holoenzymes of cAMP-dependent protein kinase containing the neural form of type I regulatory subunit have an increased sensitivity to cyclic nucleotides. J Biol Chem 265: 19502–19506

    PubMed  CAS  Google Scholar 

  • Can DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (1992a) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267: 13376–13382

    Google Scholar 

  • Can DW, Stofko-Hahn RE, Fraser ID, Cone RD, Scott JD (1992b) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem 267: 16816–16823

    Google Scholar 

  • Chrivia JC, Uhler MD, McKnight GS (1988) Characterization of genomic clones coding for the Ca and C(3 subunits of mouse cAMP-dependent protein kinase. J Biol Chem 263: 5739–5744

    PubMed  CAS  Google Scholar 

  • Clegg CH, Cadd GG, McKnight GS (1988) Genetic characterization of a brainspecific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 85: 3703–3707

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Keely SL, Park CR (1975) The distribution and dissociation of cyclic adenosine 3’,5’-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem 250: 218–225

    PubMed  CAS  Google Scholar 

  • Corbin JD, Sugden PH, West L, Flockhardt DA, Lincoln TM, McCarthy D (1978) Studies on the properties and mode of action of purified regulatory subunit of bovine heart adenosine 3’,5’-monophosphate-dependent protein kinase. J Biol Chem 253: 3997–4003

    PubMed  CAS  Google Scholar 

  • DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351: 145–147

    Article  PubMed  CAS  Google Scholar 

  • Doskeland SO (1978) Evidence that rabbit muscle protein kinase has two kinetically distinct binding sites for adenosine 3’,5’-cyclic monophosphate. Biochem Biophys Res Commun 83: 542–549

    Article  PubMed  CAS  Google Scholar 

  • DOskeland SO, Buie R, Bruland T, Vintermyr OK, Jastorff B, Lanotte M (1991) Criteria used to judge that a cellular response is mediated by cAMP. In: Reid E, Cook GMW, Luzio JP (eds) Cell signalling: experimental strategies. Royal Society of Chemistry, Cambridge, UK, pp 103–114

    Google Scholar 

  • Doskeland SO, Maronde E, Gjertsen BT (1993) The genetic subtypes of cAMP-dependent protein kinase functionally different or redundant? Biochim Biophys Acta 1178: 249–258

    Article  PubMed  CAS  Google Scholar 

  • Dostmann WR, Taylor SS, Genieser HG, Jastorff B, Doskeland SO, ogreid D (1990) Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3’,5’-cyclic phosphorothioates. J Biol Chem 265: 10484–10491

    PubMed  CAS  Google Scholar 

  • Ekanger R, Vintermyr OK, Houge G, Sand TE, Scott JD, Krebs EG, Elkhorn TS, Christoffersen T, Ogreid D, DOskeland SO (1989) The expression of cAMP-dependent protein kinase subunits is differentially regulated during liver regeneration. J Biol Chem 264: 4374–4382

    PubMed  CAS  Google Scholar 

  • Fischer EH, Krebs EG (1955) Conversion of phosphorylase h to phosphorylase a in muscle extracts. J Biol Chem 216: 121–132

    PubMed  CAS  Google Scholar 

  • Foss KB, Simard J, Berube D, Beebe SJ, Sandberg M, Grzeschik KH, Gagne R, Hansson V, Jahnsen T (1992) Localization of the catalytic subunit Cy of the cAMP-dependent protein kinase gene (PRKACG) to human chromosome region 9q13. Cytogenet Cell Genet 60: 22–25

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 4252

    Article  Google Scholar 

  • Houge G, Vintermyr OK, Doskeland SO (1990) The expression of cAMP-dependent protein kinase subunits in primary rat hepatocyte cultures. Cyclic AMP downregulates its own effector system by decreasing the amount of catalytic subunit and increasing the mRNAs for the inhibitory ( R) subunits of cAMP-dependent protein kinase. Mol Endocrinol 4: 481–488

    Google Scholar 

  • Jahnsen T, Hedin L, Lohmann SM, Walter U, Richards JS (1985a) The neural type II regulatory subunit of cAMP-dependent protein kinase is present and regulated by hormones in the rat ovary. J Biol Chem 261: 6637–6639

    Google Scholar 

  • Jahnsen T, Lohmann SM, Walter U, Hedin L, Richards JS (1985b) Purification and characterization of hormone-regulated isoforms of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovaries. J Biol Chem 260: 15980–15987

    PubMed  CAS  Google Scholar 

  • Jahnsen T, Hedin L, Kidd VJ, Beattie WG, Lohmann SM, Walter U, Durica J, Schulz TZ, Schiltz E, Browner M, Lawrence CB, Goldman D, Ratoosh SL, Richards JS (1986) Molecular cloning, cDNA structure and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells. J Biol Chem 261: 12352–12361

    PubMed  CAS  Google Scholar 

  • Jones KW, Shapero MH, Chevette M, Fournier REK (1991) Subtractive hybridization cloning of a tissue-specific extinguisher: TSE1 encodes a regulatory subunit of protein kinase A. Cell 66: 861–872

    Article  PubMed  CAS  Google Scholar 

  • Kagawa N, Waterman MR (1990) cAMP-dependent transcription of the human CYP21B (P450c21) gene requires a cis-regulatory element distinct from the consensus cAMP-regulatory element. J Biol Chem 265: 11299–11305

    Google Scholar 

  • Keryer G, Luo Z, Cavadore JC, Erlichman J, Bornens M (1993a) Phosphorylation of the regulatory subunit of type II(3 cAMP-dependent protein kinase by cyclin B/p34odo2 kinase impairs its binding to microtubule-associated protein 2. Proc Natl Acad Sci U S A 90: 5418–5422

    Article  PubMed  CAS  Google Scholar 

  • Keryer G, Rios RM, Landmark BF, Skdlhegg BS, Lohmann SM, Bornens M (1993b) A high-affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II in the centrosome of human cells. Exp Cell Res 204: 230–240

    Article  PubMed  CAS  Google Scholar 

  • Knighton DR, Xuong NH, Taylor SS, Sowadski JM (1991a) Crystallization studies of cAMP-dependent protein kinase. Cocrystals of the catalytic subunit with a 20 amino acid residue peptide inhibitor and MgATP diffract to 3.0 A resolution. J Mol Biol 220: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991b) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 407–414

    Article  PubMed  CAS  Google Scholar 

  • Knutsen HK, Taskén KA, Eskild W, Jahnsen T, Hansson V (1991) Adenosine 3’,5’-monophosphate-dependent stabilization of messenger ribonucleic acids (mRNAs) for protein kinase-A (PKA) subunits in rat Sertoli cells: rapid degradation of mRNAs for PKA subunits is dependent on ongoing RNA and protein synthesis. Endocrinology 129: 2496–2502

    Article  PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48: 923–959

    Article  PubMed  CAS  Google Scholar 

  • Kurten RC, Levy LO, Shey J, Durica JM, Richards JS (1992) Identification and characterization of the GC-rich and cyclic adenosine 3’,5’-monophosphate (cAMP)-inducible promoter of the type I113 cAMP-dependent protein kinase regulatory subunit gene. Mol Endocrinol 6: 536–550

    Article  PubMed  CAS  Google Scholar 

  • Landmark BF, Fauske B, Eskild W, Skalhegg B, Lohmann SM, Hansson V, Jahnsen T, Beebe SJ (1991) Identification, characterization, and hormonal regulation of 3’,5’cyclic adenosine monophosphate-dependent protein kinases in rat Sertoli cells. Endocrinology 129: 2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Landmark BF, (yen O. Skalhegg BS, Fauske B, Jahnsen T, Hansson V (1993) Cellular localization and age-dependent changes of the regulatory subunits of cAMP-dependent protein kinase in rat testis. J Reprod Fertil 99: 323–334

    CAS  Google Scholar 

  • Lanotte M, Riviere JB, Hermouet S, Houge G, Vintermyr OK, Gjertsen BT, Doskeland SO (1991) Programmed cell death (apoptosis) is induced rapidly and with positive cooperativity by activation of cyclic adenosine monophosphate-kinase 1 in a myeloid leukemia cell line. J Cell Physiol 146: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Lee DC, Carmichael DF, Krebs EG, McKnight GS (1983) Isolation of a eDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Nall Acad Sci U S A 80: 3608–3612

    Article  CAS  Google Scholar 

  • Levy FO, Oyen O, Sandberg M, Taskén K, Eskild W, Hansson V, Jahnsen T (1988) Molecular cloning, complementary deoxyribonucleic acid structure and predicted full-length amino acid sequence of the hormone-inducible regulatory subunit of 3’,5’-cyclic adenosine monophosphate-dependent protein kinase from human testis. Mol Endocrinol 2: 1364–1373

    Article  PubMed  CAS  Google Scholar 

  • Levy FO, Ree AH, Eikvar L, Govindan MV, Jahnsen T, Hansson V (1989) Glucocorticoid receptors and glucocorticoid effects in rat sertoli cells. Endocrinology 124: 430–436

    Article  PubMed  CAS  Google Scholar 

  • Li M, West JW, Numann R, Murphy BJ, Scheuer T, Catterall WA (1993) Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 261: 1439–1442

    Article  PubMed  CAS  Google Scholar 

  • Liu AYC (1982) Differentiation-specific increase of cAMP-dependent protein kinase in 3T3–L1 cells. J Biol Chem 257: 298–306

    PubMed  CAS  Google Scholar 

  • Lönnerberg P, Parvinen M, Jahnsen T, Hansson V, Persson H (1992) Stage-and cell-specific expression of cyclic adenosine 3’,5’-monophosphate-dependent protein kinases in rat seminiferous epithelium. Biol Reprod 46: 1057–1068

    Article  PubMed  Google Scholar 

  • Lorimer IAJ, Sanwal BD (1989) Regulation of cyclic AMP-dependent protein kinase levels during skeletal myogenesis. Biochem J 264: 305–308

    PubMed  CAS  Google Scholar 

  • Lund J, Ahlgren R, Wu DH, Kagimoto M, Simpson ER, Waterman MR (1990) Transcriptional regulation of the bovine CYP17 (P-45017a) gene. Identification of two cAMP regulatory regions lacking the consensus cAMP-responsive element ( CRE ). J Biol Chem 265: 3304–3312

    Google Scholar 

  • Meinkoth JL, Ji Y, Taylor SS, Feramisco JR (1990) Dynamics of the distribution of cyclic AMP-dependent protein kinase in living cells. Proc Natl Acad Sci U S A 87: 9595–9599

    Article  PubMed  CAS  Google Scholar 

  • Moger WH (1991) Evidence for compartmentalization of adenosine 3’,5’-monophosphate (cAMP)-dependent protein kinases in rat Leydig cells using site-selective cAMP analogs. Endocrinology 128: 1414–1418

    Article  PubMed  CAS  Google Scholar 

  • Muraguchi A, Miyazaki K, Kehrl JH, Fauci AS (1984) Inhibition of human B cell activation by diterpene forskolin: interference with B cell growth factor-induced G1 to S transition of the B cell cycle. J Immunol 133: 1283–1287

    PubMed  CAS  Google Scholar 

  • Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Nowak I, Seipel K, Schwarz M, Jans DA, Hemmings BA (1987) Isolation of a cDNA and characterization of the 5’ flanking region of the gene encoding the type I regulatory subunit of the cAMP-dependent protein kinase. Eur J Biochem 167: 27–33

    Article  PubMed  CAS  Google Scholar 

  • Ogreid D, Ekanger R, Suva RH, Miller JP, Döskeland SO (1989) Comparison of the two classes of binding sites ( A and B) of type I and type II cyclicAMP-dependent protein kinases by using cyclic nucleotide analogs. Eur J Biochem 181: 19–31

    Google Scholar 

  • Otten AD, McKnight GS (1989) Overexpression of the type II regulatory subunit of the cAMP-dependent protein kinase eliminates the type I holoenzyme in mouse cells. J Biol Chem 264: 20255–20260

    PubMed  CAS  Google Scholar 

  • Otten AD, Parenteau LA, Döskeland SO, McKnight GS (1991) Hormonal activation of gene transcription in ras-transformed NIH3T3 cells overexpressing Rua and RII(3 subunits of the cAMP-dependent protein kinase. J Biol Chem 266: 23074–23082

    PubMed  CAS  Google Scholar 

  • Ofyen O, Frt ysa A, Sandberg M, Eskild W, Joseph D, Hansson V, Jahnsen T (1987) Cellular localization and age-dependent changes in mRNA for cyclic adenosine 3’,5’-monophosphate-dependent protein kinases in rat testis. Biol Reprod 37: 947–956

    Article  Google Scholar 

  • Oyen O, Sandberg M, Eskild W, Levy FO, Knutsen G, Beebe S, Hansson V, Jahnsen T (1988) Differential regulation of messenger ribonucleic acids for specific subunits of cyclic adenosine 3’,5’-monophosphate (cAMP)-dependent protein kinase by cAMP in rat Sertoli cells. Endocrinology 122: 2658–2666

    Article  PubMed  CAS  Google Scholar 

  • Oyen O, Myklebust F, Scott JD, Hansson V, Jahnsen T (1989) Human testis cDNA for the regulatory subunit R11O, of cAMP-dependent protein kinase encodes an alternate amino-terminal region. FEBS Lett 246: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Ofyen O, Myklebust F, Scott JD, Cadd GG, McKnight GS, Hansson V, Jahnsen T (1990) Subunits of cyclic adenosine 3’,5’-monophosphate-dependent protein kinase show differential and distinct expression patterns during germ cell differentiation: alternative polyadenylation in germ cells gives rise to unique smallersized mRNA species. Biol Reprod 43: 46–54

    Article  Google Scholar 

  • Potter RL, Stafford PH, Taylor SS (1978) Regulatory subunit of cAMP-dependent protein kinase I from porcine skeletal muscle: purification and proteolysis. Arch Biochem Biophys 190: 174–180

    Article  PubMed  CAS  Google Scholar 

  • Ratoosh SL, Lifka J, Hedin L, Jahnsen T, Richards JS (1987) Hormonal regulation of the synthesis and mRNA content of the regulatory subunit of cyclic AMP-dependent protein kinase type II in cultured rat ovarian granulosa cells. J Biol Chem 262: 7306–7313

    PubMed  CAS  Google Scholar 

  • Reimann EM, Walsh DA, Krebs EG (1971) Purification and properties of rabbit skeletal muscle adenosine 3’,5’-monophosphate-dependent protein kinases. J Biol Chem 246: 1986–1995

    PubMed  CAS  Google Scholar 

  • Richardson JM, Howard P, Massa JS, Maurer RA (1990) Posttranscriptional regulation of cAMP-dependent protein kinase activity by cAMP in GH3 pituitary tumor cells. Evidence for increased degradation of catalytic subunit in the presence of cAMP. J Biol Chem 265: 13635–13640

    Google Scholar 

  • Robinson GA, Butcher RW, Sutherland EW (1971) Cyclic AMP. Academic, New York

    Google Scholar 

  • Roesler WJ, Vandenbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263: 9063–9066

    PubMed  CAS  Google Scholar 

  • Rogers KV, Boring LF, McKnight GS, Clegg CH (1992) Promoter for the regulatory type I(3 subunit of the 3’,5’cyclic adenosine monophosphate-dependent protein kinase directs transgene expression in the central nervous system. Mol Endocrinol 6: 1756–1765

    Article  PubMed  CAS  Google Scholar 

  • Sandberg M, Taskén K, Oyen O, Hansson V, Jahnsen T (1987) Molecular cloning, cDNA structure and deduced amino acid sequence for a type I regulatory subunit of cAMP-dependent protein kinase from human testis. Biochem Biophys Res Commun 149: 939–945

    Article  PubMed  CAS  Google Scholar 

  • Scarpetta MA, Uhler MD (1993) Evidence for two additional isoforms of the endogenous protein kinase inhibitor of cAMP-dependent protein kinase in mouse. J Biol Chem 268: 10927–10931

    PubMed  CAS  Google Scholar 

  • Schwartz DA, Rubin CS (1983) Regulation of cAMP-dependent protein kinase subunit levels in Friend erythroleukemic cells. J Biol Chem 258: 777–784

    PubMed  CAS  Google Scholar 

  • Scott JD (1991) Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 50: 123–145

    Article  PubMed  CAS  Google Scholar 

  • Scott JD, Can DW (1992) Subcellular localization of the type II cAMP-dependent protein kinase. News Physiol Sci 7: 143–148

    CAS  Google Scholar 

  • Scott JD, Glaccum MB, Zoller MJ, Uhler MD, Helfman DM, McKnight GS, Krebs EG (1987) The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc Natl Acad Sci USA 84: 5192–5196

    Article  PubMed  CAS  Google Scholar 

  • Scott JD, Stofko RE, McDonald JR, Comer JD, Vitalis EA, Mangili JA (1990) Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase. J Biol Chem 265: 21561–21566

    PubMed  CAS  Google Scholar 

  • Showers MO, Maurer RA (1986) A cloned bovine cDNA encodes an alternate form of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 261: 16288–16291

    PubMed  CAS  Google Scholar 

  • Simard J, Bérubé D, Sandberg M, Grzeschik KH, Gagné R, Hansson V, Jahn-sen T (1992) Assignment of the gene encoding the catalytic subunit C13 of camp-dependent protein kinase to the p36 band on chromosome I. Human Genet 88: 653–657

    Article  CAS  Google Scholar 

  • Singh IS, Luo ZJ, Eng A, Erlichman J (1991) Molecular cloning and characterization of the promoter region of the mouse regulatory subunit RIIi3 of type II cAMP-dependent protein kinase. Biochem Biophys Res Commun 178: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Skâlhegg BS, Landmark BF, Doskeland SO, Hansson V, Lea T, Jahnsen T (1992) Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3’,5’-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J Biol Chem 267: 15707–15714

    PubMed  Google Scholar 

  • Skâlhegg BS, Rasmussen AM, Taskén K, Hansson V, Jahnsen T, Lea T (1994a) T-cell activation through the TCR/CD3 complex sensitizes the CD28 pathway to the inhibitory effects of cAMP-dependent protein kinase. Scand J Immunol (in press)

    Google Scholar 

  • Skâlhegg BS, Taskén K, Hansson V, Huitfeldt HS, Jahnsen T, Lea T (1994b) Cyclic AMP-dependent protein kinase type I localizes to and interacts with the TCR/CD3 complex during T-cell activation. Science 263: 84–87

    Article  PubMed  Google Scholar 

  • Solberg R, Taskén K, Keiserud A, Jahnsen T (1991) Molecular cloning, cDNA structure and tissue-specific expression of the human regulatory subunit RIP of cAMP-dependent protein kinases. Biochem Biophys Res Commun 176: 166–172

    Article  PubMed  CAS  Google Scholar 

  • Solberg R, Sistonen P, Triiskelin AL, Bérubé D, Simard J, Krajci P, Jahnsen T, de la Chapelle A (1992) Mapping of the regulatory subunits RI(3 and R11f3 of cAMP-dependent protein kinase genes on human chromosome 7. Genomies 14: 636–983

    Google Scholar 

  • Solberg R, Sandberg M, Spurkland A, Jahnsen T (1993a) Isolation and characterization of a human pseudogene for the regulatory subunit RIa of cAMPdependent protein kinases and its sublocalization on chromosome 1. Genomies 15: 591–597

    Article  CAS  Google Scholar 

  • Solberg R, Taskén K, Sandberg M, Natarajan V, Jahnsen T (1993b) Molecular cloning, exonintron organization, and 5’-upstream sequence of the human regulatory subunit Rla of cAMP-dependent protein kinases (submitted)

    Google Scholar 

  • Solberg R, Taskén K, Wen W, Coghlan VM, Meinkoth JL, Scott JD, Jahnsen T, Taylor SS (1993e) Heterologous expression, characterization and subcellular localization of the human regulatory subunit RIP of cAMP-dependent protein kinases (submitted)

    Google Scholar 

  • Steinberg RA (1991) A kinase-negative mutant of S49 mouse lymphoma cells is defective in posttranslational maturation of catalytic subunit of cyclic AMP-dependent protein kinase. Mol Cell Biol 11: 705–712

    PubMed  CAS  Google Scholar 

  • Steinberg RA, Agard DA (1981) Turnover of regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells. Regulation by catalytic subunit and analogs of cyclic AMP. J Biol Chem 256: 10731–10734

    Google Scholar 

  • Su Y, Taylor SS, Dostmann WRG, Xuong NH, Varughese KI (1993) Crystallization of a deletion mutant of the R-subunit of cAMP dependent protein kinase. J Mol Biol 230: 1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenosine ribonucleotide formed by tissue particles. J Biol Chem 232: 1077–1091

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Wosilait WD (1955) Inactivation and activation of liver phosphorylase. Nature 175: 169–170

    Article  PubMed  CAS  Google Scholar 

  • Tash JS, Kakar SS, Means AR (1984) Flagellar motility requires the cAMPdependent phosphorylation of a heat-stable NP-40 soluble 56 kDa protein, axokinin. Cell 38: 551–559

    Article  PubMed  CAS  Google Scholar 

  • Taskén K, Kvale D, Hansson V, Jahnsen T (1990) Protein kinase C activation selectively increases mRNA levels for one of the regulatory subunits (RIa) of cAMP-dependent protein kinases in HT29 cells. Biochem Biophys Res Commun 172: 409–414

    Article  PubMed  Google Scholar 

  • Taskén KA, Knutsen HK, Attramadal H, Taskén K, Jahnsen T, Hansson V, Eskild W (1991) Different mechanisms are involved in cAMP-mediated induction of mRNAs for subunits of cAMP-dependent protein kinases. Mol Endocrinol 5: 21–28

    Article  PubMed  Google Scholar 

  • Taskén KA, Knutsen HK, Eikvar L, Taskén K, Eskild W, Jahnsen T, Hansson V (1992) Protein kinase C activation by 12-O-tetradecanoylphorbol 13-acetate modulates messenger ribonucleic acid levels for two of the regulatory subunits of 3’,5’-cyclic adenosine monophosphate-dependent protein kinases ( RIIß and RIa) via multiple and distinct mechanisms. Endocrinology 130: 1271–1280

    Google Scholar 

  • Taskén K, Andersson KB, Erikstein BK, Hansson V, Jahnsen T, Blomhoff HK (1993a) Regulation of growth in a neoplastic B cell line (Reh) by transfected subunits of cAMP-dependent protein kinase (submitted)

    Google Scholar 

  • Taskén K, Andersson KB, Skâlhegg BS, Taskén KA, Hansson V, Jahnsen T, Blomhoff HK (1993b) Reciprokal regulation of mRNA and protein for subunits of cAMP-dependent protein kinase (RIa and Ca) by cAMP in a neoplastic B cell line ( Reh ). J Biol Chem 268: 23483–23489

    Google Scholar 

  • Taskén K, Jahnsen T, Solberg R (1993c) The human genes for the cAMP-dependent protein kinase subunits, RIIa (locus PRKAR2A) and Ca (locus PRKACA), localizes to chromosome 3 and 19, respectively (submitted)

    Google Scholar 

  • Taskén K, Skâlhegg BS, Solberg R, Andersson KB, Taylor SS, Lea T, Blom-hoff HK, Jahnsen T, Hansson V (1993e) Novel isozymes of cAMP-dependent protein kinase exist in human cells due to formation of RIa-RI(3 heterodimeric complexes. J Biol Chem 268: 21276–21283

    PubMed  Google Scholar 

  • Taskén K, Solberg R, Hansson V, Jahnsen T (1993f) Alternately spliced mRNA species of the regulatory subunit, RI, of cAMP-dependent protein kinases are differentially regulated by cAMP (submitted)

    Google Scholar 

  • Taskén KA, Taskén K, Eskild W, Knutsen HK, Richards JS, Kurten RC, Jahn-sen T, Hansson V, Guérin SL (1993g) Identification of a cAMP-responsive region within the 5’ flanking sequence of the rat gene for the hormone sensitive regulatory subunit, RIIß, of cAMP-dependent protein kinases in rat Sertoli cells (submitted)

    Google Scholar 

  • Taylor SS, Knighton DR, Zheng J, Ten Eyck LF, Sowadski JM (1992) Structural framework for the protein kinase family. Annu Rev Cell Biol 8: 429–462

    Article  PubMed  CAS  Google Scholar 

  • Thomis DC, Floyd-Smith G, Samuel CE (1992) Mechanism of interferon action. cDNA structure and regulation of a novel splice-site variant of the catalytic subunit of human protein kinase A from interferon-treated human cells. J Biol Chem 267: 10723–10728

    PubMed  CAS  Google Scholar 

  • Uhler MD, Carmichael DF, Lee DC, Chrivia JC, Krebs EG, McKnight GS (1986a) Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc Natl Acad Sci USA 83: 1300–1304

    Article  PubMed  CAS  Google Scholar 

  • Uhler MD, Chrivia JC, McKnight GS (1986b) Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 261: 15360–15363

    PubMed  CAS  Google Scholar 

  • van Patten SM, Howard P, Walsh DA, Maurer RA (1992) The a-and 13-isoforms of the inhibitor protein of the 3’,5’-cyclic adenosine monophosphate-dependent protein kinase: characteristics and tissue-and developmental-specific expression. Mol Endocrinol 6: 2114–2122

    Article  PubMed  Google Scholar 

  • Van Roy N, Laureys G, Versteeg R, Opdenakker G, Speleman F (1993) High-resolution fluorescence mapping of 46 DNA markers to the short arm of human chromosome 1. Genomics 18: 71–78

    Article  PubMed  Google Scholar 

  • Wainwright B, Lench N, Davies K, Scambler P, Kruyer H, Williamson R, Jahnsen T, Farrall M (1987) A human regulatory subunit of type II cAMPdependent protein kinase localized by its linkage relationship to several cloned chromosome 7q markers. Cytogenet Cell Genet 45: 925–932

    Article  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3’,5’-monophosphatedependent protein kinase from rabbit skeletal muscle. J Biol Chem 243: 2867–2873

    Google Scholar 

  • Walsh DA, Angelos KL, van Patten SM, Glass DB, Garetto LP (1990) The inhibitor protein of the cAMP-dependent protein kinase. In: Kemp BE (ed) Peptides and protein phosphorylation. CRC Press, Boca Raton, pp 43–84

    Google Scholar 

  • Weber IT, Steitz T, Bubis J, Taylor SS (1987) Predicted structures of the cAMP binding domains of type I and type II regulatory subunits of cAMPdependent protein kinase. Biochemistry 26: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Wiemann S, Kinzel V, Pyerin W (1991) Isoform C(32, an unusual form of the bovine catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 266: 5140–5146

    PubMed  CAS  Google Scholar 

  • Yonemoto W, McGlone ML, Taylor SS (1993) N-myristylation of the catalytic subunit of cAMP-dependent protein kinase conveys structural stability. Biol Chen 268: 2348–2352

    CAS  Google Scholar 

  • Zheng JH, Knighton DR, Parello J, Taylor SS, Sowadski JM (1991) Crystallization of catalytic subunit of adenosine cyclic monophosphate-dependent protein kinase. Methods Enzymol 200: 508–521

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

G. Verhoeven U.-F. Habenicht

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taskén, K. et al. (1994). Diversity and Regulation of cAMP-Dependent Protein Kinases. In: Verhoeven, G., Habenicht, UF. (eds) Molecular and Cellular Endocrinology of the Testis. Ernst Schering Research Foundation Workshop, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22189-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22189-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22191-4

  • Online ISBN: 978-3-662-22189-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics