Skip to main content

Abstract

Table 4.1 lists all 20 proteinogenic amino acids present in peptides which interact with MHC molecules. There are different criteria for grouping amino acids, such as the size of side chains, polarity, charge or hydrophobicity. Regarding the specific characteristics that are required in one distinct contact site, usually one of the different sets of amino acids is best at meeting the needs. Although grouped into separate sets in Table 4.1, some of the amino acids are able to fulfill completely different requirements and therefore act as jokers. As an example, T belongs to the set of hydrophilic amino acids. Because of the methyl group at the end of its side chain, it may interact via hydrophobic interactions with an MHC pocket which is shaped in such a way that methyl groups fit optimally into it. In this case, T interacts similarly to aliphatic amino acids, which also have a methyl group at the end of their side chains. Another joker is Y, which belongs to the set of large aromatic/hydrophobic amino acids. Its hydroxyl group at the end of the side chain enables Y to interact by hydrogen bonding and therefore act like hydrophilic residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt DF, Henderson RA, Shabanowitz J et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992; 255: 1261–3.

    PubMed  CAS  Google Scholar 

  2. Stevanovié S, Jung G. Multiple sequence analysis: pool sequencing of synthetic and natural peptide libraries. Anal Biochem 1993; 212: 212–20.

    Google Scholar 

  3. Jardetzky TS, Lane WS, Robinson RA et al. Identification of self peptides bound to purified HLA-B27. Nature 1991; 353: 326–9.

    PubMed  CAS  Google Scholar 

  4. Falk K, Rötzschke O, Stevanovic S et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–6.

    PubMed  CAS  Google Scholar 

  5. Fremont DH, Matsumura M, Stura EA et al. Crystal structures of two viral peptides in complex with murine MHC class I H-2K’. Science 1992; 257: 919–27.

    PubMed  CAS  Google Scholar 

  6. Rammensee HG, Falk K, Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 1993; 11: 213–44.

    PubMed  CAS  Google Scholar 

  7. Androlewicz MJ, Cresswell P. How selective is the transporter associated with antigen processing? Immunity 1996; 5: 1–5.

    PubMed  CAS  Google Scholar 

  8. Stevanovié S. Multiple sequence analysis of MHC ligands. In: Levkovits I, ed. Immunology Methods Manual. San Diego: Academic Press Ltd., 1997: 589–602.

    Google Scholar 

  9. Ruppert J, Sidney J, Celis E et al. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 1993; 74: 929–37.

    PubMed  CAS  Google Scholar 

  10. Drijfhout JW, Brandt RMP, D’Amaro J et al. Detailed motifs for peptide binding to HLA-A*0201 derived from large random sets of peptides using a cellular binding assay. Hum Immunol 1995; 43: 1–12.

    PubMed  CAS  Google Scholar 

  11. Udaka K, Wiesmüller K-H, Kienle S et al. Tolerance to amino acid variations in peptides binding to the major histocompatibility complex class I protein H-2K6. J Biol Chem 1995; 270: 24130–4.

    PubMed  CAS  Google Scholar 

  12. Hammer J, Takacs B, Sinigaglia F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med 1992; 176: 1007–13.

    PubMed  CAS  Google Scholar 

  13. Davenport MP, Smith KJ, Barouch D et al. HLA class I binding motifs derived from random peptide libraries differ at the COOH terminus from those of eluted peptides. J Exp Med 1997; 185: 367–71.

    PubMed  CAS  Google Scholar 

  14. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152: 163–75.

    PubMed  CAS  Google Scholar 

  15. Nelson CA, Vidaysky I, Viner NJ et al. Amino terminal trimming of peptides for presentation on major histocompatibility complex class II molecules. Proc Natl Acad Sci U S A 1997; 94: 628–33.

    PubMed  CAS  Google Scholar 

  16. Stern LJ, Brown JH, Jardetzky TS et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994; 368: 215–21.

    PubMed  CAS  Google Scholar 

  17. Falk K, Rötzschke O, Stevanovié S et al. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 1994; 39: 230–42.

    PubMed  CAS  Google Scholar 

  18. Chicz RM, Urban RG, Gorga JC et al. Specificity and promiscuity among naturally processed peptides bound to HLADR alleles. J Exp Med 1993; 178: 27–47.

    PubMed  CAS  Google Scholar 

  19. Fleckenstein B, Kalbacher H, Müller C et al. New ligands binding to the human leukocyte antigen class II molecule DRB1*0101 based on the activity pattern of an undecapeptide library. Eur J Biochem 1996; 240: 71–7.

    PubMed  CAS  Google Scholar 

  20. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-Al, -All, -A31, and -A33 molecules. Immunogenetics 1994; 40: 238–41.

    PubMed  CAS  Google Scholar 

  21. DiBrino M, Tsuchida T, Turner RV et al. HLA-Al and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 1993; 151: 5930–5.

    PubMed  CAS  Google Scholar 

  22. Sette A, Sidney J, del Guercio MF et al. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol 1994; 31: 813–22.

    PubMed  CAS  Google Scholar 

  23. DiBrino M, Parker KC, Shiloach J et al. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 1994; 152: 620–31.

    PubMed  CAS  Google Scholar 

  24. Kubo RT, Sette A, Grey HM et al. Defi-. nition of specific peptide motifs for four major HLA-A alleles. J Immunol 1994; 152: 3913–24.

    PubMed  CAS  Google Scholar 

  25. Engelhard VH. Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 1994; 6: 13–23.

    PubMed  CAS  Google Scholar 

  26. Stevanovie S, Pomer S, Rammensee H- G., Oberflächenantigene im Nierenzellkarzinom-Präsentation von MHC I-gebundenen Selbstpeptiden. Akt Urol 1995; Sonderheft:45–6.

    Google Scholar 

  27. Traversari C, van der Bruggen P, Luescher IF et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176: 1453–7.

    PubMed  CAS  Google Scholar 

  28. van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an an- tigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–7.

    PubMed  Google Scholar 

  29. Gaugler B, van den Eynde B, van der Bruggen P et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 1994; 179: 921–30.

    PubMed  CAS  Google Scholar 

  30. Celis E, Tsai V, Crimi C et al. Induction of anti-tumor cytotoxic T lymphocytes in 40. normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci U S A 1994; 91: 2105–9.

    PubMed  CAS  Google Scholar 

  31. Henderson RA, Cox AL, Sakaguchi K et al. Direct identification of an endogenous peptide recognized by multiple HLA- 41. A2.1-specific cytotoxic T cells. Proc Natl Acad Sci U S A 1993; 90: 10275–9.

    PubMed  CAS  Google Scholar 

  32. Henderson RA, Michel H, Sakaguchi K et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 1992; 255: 1264–6.

    PubMed  CAS  Google Scholar 

  33. Wei ML, Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell con- tain signal sequence-derived peptides. Nature 1992; 356: 443–6.

    PubMed  CAS  Google Scholar 

  34. Wölfel T, Van Pel A, Brichard V et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994; 24: 759–64.

    PubMed  Google Scholar 

  35. Robbins PF, el Gamil M, Kawakami Y et al. Recognition of tyrosinase by tumor-infiltrating lymphocytes from a patient responding to immunotherapy [published erratum appears in Cancer Res 1994; 54:3952]. Cancer Res 1994; 54: 3124–6.

    CAS  Google Scholar 

  36. Brichard V, Van Pel A, Wölfel T et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993; 178: 489–95.

    PubMed  CAS  Google Scholar 

  37. Engelhard VH, Appella E, Benjamin DC et al. Mass spectrometric analysis of peptides associated with the human class I MHC molecules HLA-A2.1 and HLA-B7 and identification of structural features that determine binding. Chem Immunol 1993; 57: 39–62.

    PubMed  CAS  Google Scholar 

  38. Harris PE, Colovai A, Liu Z et al. Naturally processed HLA class I bound peptides from c-myc-transfected cells reveal allele-specific motifs. J Immunol 1993; 151: 5966–74.

    PubMed  CAS  Google Scholar 

  39. Gotch F, McMichael A, Rothbard J. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med 1988; 168: 2045–57.

    PubMed  CAS  Google Scholar 

  40. Utz U, Koenig S, Coligan JE et al. Presentation of three different viral peptides, HTLV-1 Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J Immunol 1992; 149: 214–21.

    PubMed  CAS  Google Scholar 

  41. Falk K, Rötzschke O, Stevanovié S et al. Analysis of a naturally occurring HLA class I-restricted viral epitope. Immunology 1994; 82: 337–42.

    PubMed  CAS  Google Scholar 

  42. Bednarek MA, Sauma SY, Gammon MC et al. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLAA2. J Immunol 1991; 147: 4047–53.

    PubMed  CAS  Google Scholar 

  43. Kobayashi H, Sato K, Miyokawa N et al. Analysis of naturally processed human histocompatibility leukocyte antigen class I-bound peptides from hepatocellular carcinoma tissues in vivo. Jpn J Cancer Res 1995; 86: 962–8.

    PubMed  CAS  Google Scholar 

  44. di Marzo Veronese F, Arnott D, Barnaba V et al. Autoreactive cytotoxic T lymphocytes in human immunodeficiency virus type 1-infected subjects. J Exp Med 1996; 183: 2509–16.

    Google Scholar 

  45. Skipper JC, Hendrickson RC, Gulden PH et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 1996; 183: 527–34.

    PubMed  CAS  Google Scholar 

  46. Diehl, M. Untersuchungen zur Peptidpräsentation gewebsspezifischer HLAMoleküle 1995; Phillips-Universität Marburg.

    Google Scholar 

  47. Walker BD, Flexner C, Birch Limberger K et al. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type. Proc Natl Acad Sci U S A 1989; 86: 9514–8.

    PubMed  CAS  Google Scholar 

  48. Nayersina R, Fowler P, Guilhot S et al. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 1993; 150: 4659–71.

    PubMed  CAS  Google Scholar 

  49. Bertoletti A, Costanzo A, Chisari FV et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 1994; 180: 933–43.

    PubMed  CAS  Google Scholar 

  50. Bertoletti A, Chisari FV, Penna A et al. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J Virol 1993; 67: 2376–80.

    PubMed  CAS  Google Scholar 

  51. del Guercio MF, Sidney J, Hermanson G et al. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 1995; 154: 685–93.

    PubMed  Google Scholar 

  52. Lee SP, Thomas WA, Murray RJ et al. HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 1993; 67: 7428–35.

    PubMed  CAS  Google Scholar 

  53. Robbins PA, Lettice LA, Rota P et al. Comparison between two peptide epitopes presented to cytotoxic T lympho-cytes by HLA-A2. Evidence for discrete locations within HLA-A2. J Immunol 1989; 143: 4098–103.

    PubMed  CAS  Google Scholar 

  54. Cerny A, McHutchison JG, Pasquinelli C et al. Cytotoxic T lymphocyte response to hepatitis C virus-derived peptides containing the HLA A2.1 binding motif. J Clin Invest 1995; 95: 521–30.

    PubMed  CAS  Google Scholar 

  55. Shirai M, Okada H, Nishioka M et al. An epitope in hepatitis C virus core region recognized by cytotoxic T cells in mice and humans. J Virol 1994; 68: 3334–42.

    PubMed  CAS  Google Scholar 

  56. Tarpey I, Stacey S, Hickling J et al. Human cytotoxic T lymphocytes stimulated by endogenously processed human papillomavirus type 11 E7 recognize a peptide containing a HLA-A2 (A*0201) motif. Immunology 1994; 81: 222–7.

    PubMed  CAS  Google Scholar 

  57. Coulie PG, Brichard V, Van Pel A et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994; 180: 35–42.

    PubMed  CAS  Google Scholar 

  58. Kawakami Y, Eliyahu S, Delgado CH et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A 1994; 91: 3515–9.

    PubMed  CAS  Google Scholar 

  59. Kawakami Y, Eliyahu S, Sakaguchi K et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180: 347–52.

    PubMed  CAS  Google Scholar 

  60. Cox AL, Skipper J, Chen Y et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994; 264: 716–9.

    PubMed  CAS  Google Scholar 

  61. Kawakami Y, Eliyahu S, Delgado CH et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994; 91: 6458–62.

    PubMed  CAS  Google Scholar 

  62. Kawakami Y, Eliyahu S, Jennings C et al. Recognition of multiple epitopes in the human melanoma antigen gp 100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 1995; 154: 3961–8.

    PubMed  CAS  Google Scholar 

  63. Hadida F, Haas G, Zimmermann N et al. CTLs from lymphoid organs recognize an optimal HLA-A2-restricted and HLA-B52-restricted nonapeptide and 72. several epitopes in the C-terminal region of HIV-1 Nef. J Immunol 1995; 154: 4174–86.

    PubMed  CAS  Google Scholar 

  64. Blum-Tirouvanziam U, Servis C, Hab- luetzel A et al. Localization of HLA-A2.1–73. restricted T cell epitopes in the circumsporozoite protein of Plasmodium falciparum. J Immunol 1995; 154: 3922–31.

    PubMed  CAS  Google Scholar 

  65. Robbins PA, Garboczi DN, Strominger JL. HLA-A*0201 complexes with two 10-Mer peptides differing at the P2 anchor residue have distinct refolding kinetics. J Immunol 1995; 154: 703–9.

    PubMed  CAS  Google Scholar 

  66. Stuber G, Dillner J, Modrow S et al. HLA-A0201 and HLA-B7 binding pep- 75. tides in the EBV-encoded EBNA-1, EBNA-2 and BZLF-1 proteins detected in the MHC class I stabilization assay. Low proportion of binding motifs for several 76. HLA class I alleles in EBNA-1. Int Immunol 1995; 7: 653–63.

    PubMed  CAS  Google Scholar 

  67. Man S, Newberg MH, Crotzer VL et al. Definition of a human T cell epitope from influenza A nonstructural protein 77. 1 using HLA-A2.1 transgenic mice. Int Immunol 1995; 7: 597–605.

    PubMed  CAS  Google Scholar 

  68. Rivoltini L, Kawakami Y, Sakaguchi K et al. Induction of tumor-reactive CTL from peripheral blood and tumor-infil- 78. trating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995; 154: 2257–65.

    PubMed  CAS  Google Scholar 

  69. Shirai M, Arichi T, Nishioka M et al. CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-A2.1. J Immunol 1995; 154: 2733–42.

    PubMed  CAS  Google Scholar 

  70. Rehermann B, Fowler P, Sidney J et al. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 1995; 181: 1047–58.

    PubMed  CAS  Google Scholar 

  71. Fisk B, Blevins TL, Wharton JT et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cy-totoxic T lymphocyte lines. J Exp Med 1995; 181: 2109–17.

    PubMed  CAS  Google Scholar 

  72. Dupuis M, Kundu SK, Merigan TC. Characterization of HLA-A 0201-restricted cytotoxic T cell epitopes in conserved regions of the HIV type 1 gp160 protein. J Immunol 1995; 155: 2232–9.

    PubMed  CAS  Google Scholar 

  73. den Haan JM, Sherman NE, Blokland E et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995; 268: 1476–80.

    Google Scholar 

  74. Wentworth PA, Vitiello A, Sidney J et al. Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigentransgenic mice. Eur J Immunol 1996; 26: 97–101.

    PubMed  CAS  Google Scholar 

  75. Cerny A, Fowler P, Brothers MA et al. Induction in vitro of a primary human antiviral cytotoxic T cell response. Eur i Immunol 1995; 25: 627–30.

    CAS  Google Scholar 

  76. Panina-Bordignon P, Lang R, van Endert PM et al. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 1995; 181: 1923–7.

    Google Scholar 

  77. Castelli C, Storkus WJ, Maeurer MJ et al. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8’ cytotoxic T lymphocytes. J Exp Med 1995; 181: 363–8.

    PubMed  CAS  Google Scholar 

  78. van der Bruggen P, Bastin J, Gajewski T et al. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 1994; 24: 3038–43.

    PubMed  Google Scholar 

  79. Rehermann B, Pasquinelli C, Mosier SM et al. Hepatitis B virus (HBV) sequence variation of cytotoxic T lymphocyte epitopes is not common in patients with chronic HBV infection. J Clin Invest 1995; 96: 1527–34.

    PubMed  CAS  Google Scholar 

  80. Rehermann B, Lau D, Hoofnagle JH et al. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest 1996; 97: 1655–65.

    PubMed  CAS  Google Scholar 

  81. Aidoo M, Lalvani A, Allsopp CE et al. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 1995; 345: 1003–7.

    PubMed  CAS  Google Scholar 

  82. Battegay M, Fikes J, Di Bisceglie AM et al. Patients with chronic hepatitis C have circulating cytotoxic T cells which recognize hepatitis C virus-encoded peptides binding to HLA-A2.1 molecules. J Virol 1995; 69: 2462–70.

    PubMed  CAS  Google Scholar 

  83. Kurokohchi K, Akatsuka T, Pendleton CD et al. Use of recombinant protein to identify a motif-negative human cytotoxic T-cell epitope presented by HLAA2 in the hepatitis C virus NS3 region. J Virol 1996; 70: 232–40.

    PubMed  CAS  Google Scholar 

  84. Harrer E, Harrer T, Barbosa P et al. Recognition of the highly conserved YMDD region in the human immunodeficiency virus type 1 reverse transcriptase by HLA-A2-restricted cytotoxic T lymphocytes from an asymptomatic long-term nonprogressor. J Infect Dis 1996; 173: 476–9.

    PubMed  CAS  Google Scholar 

  85. Guilloux Y, Lucas S, Brichard VG et al. A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 1996; 183: 1173–83.

    PubMed  CAS  Google Scholar 

  86. Loftus DJ, Castelli C, Clay TM et al. Identification of epitope mimics recognized by CTL reactive to the melanoma/ melanocyte-derived peptide MART-1. J Exp Med 1996; 184: 647–57.

    PubMed  CAS  Google Scholar 

  87. Wölfel T, Hauer M, Schneider J et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269: 1281–4.

    PubMed  Google Scholar 

  88. Yang O, Kalams SA, Rosenzweig M et al. Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 1996; 70: 5799–806.

    PubMed  CAS  Google Scholar 

  89. Fisk B, Savary C, Hudson JM et al. Changes in an HER-2 peptide upregulating HLA-A2 expression affect both conformational epitopes and CTL recognition: implications for optimization of antigen presentation and tumor-specific CTL induction. J Immunother Emphasis Tumor Immunol 1995; 18: 197–209.

    PubMed  CAS  Google Scholar 

  90. Alexander-Miller MA, Parker KC, Tsukui T et al. Molecular analysis of presentation by HLA-A2.1 of a promiscuously binding V3 loop peptide from the HIV-1 envelope protein to human cytotoxic T lymphocytes. Int Immunol 1996; 8: 641–9.

    PubMed  CAS  Google Scholar 

  91. Wentworth PA, Sette A, Celis E et al. Identification of A2-restricted hepatitis C virus-specific cytotoxic T lymphocyte epitopes from conserved regions of the viral genome. Int Immunol 1996; 8: 651–9.

    PubMed  CAS  Google Scholar 

  92. Wills MR, Carmichael AJ, Mynard K et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specifity, and T-cell receptor usage of pp65-specific CTL. J Virol 1996; 70: 7569–79.

    PubMed  CAS  Google Scholar 

  93. Tarpey I, Stacey S, Hickling J et al. Human cytotoxic T lymphocytes stimulated by endogenously processed human papillomavirus type 11 E7 recognize a peptide containing a HLA-A2 (A*0201) motif. Immunology 1994; 81: 222–7.

    PubMed  CAS  Google Scholar 

  94. Steven NM, Leese AM, Annels NE et al. Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med 1996; 184: 1801–13.

    PubMed  CAS  Google Scholar 

  95. Kerr BM, Kienzle N, Burrows JM et al. Identification of Type B-specific and cross-reactive cytotoxic T-lymphocyte responses to Epstein-Barr virus. J Virol 1996; 70: 8858–64.

    PubMed  CAS  Google Scholar 

  96. Plebanski M, Allsopp CE, Aidoo M et al. Induction of peptide-specific primary cytotoxic T lymphocyte responses from human peripheral blood. Eur J Immunol 1995; 25: 1783–7.

    PubMed  CAS  Google Scholar 

  97. Ressing ME, Sette A, Brandt RM et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201binding peptides. J Immunol 1995; 154: 5934–43.

    PubMed  CAS  Google Scholar 

  98. Altuvia Y, Schueler 0, Margalit H. Ranking potential binding peptides to MHC molecules by a computational threading approach. J Mol Biol 1995; 249: 244–50.

    PubMed  CAS  Google Scholar 

  99. Barouch D, Friede T, Stevanovie S et al. HLA-A2 subtypes are functionally distinct in peptide binding and presentation. J Exp Med 1995; 182: 1847–56.

    PubMed  CAS  Google Scholar 

  100. Fleischhauer K, Tanzarella S, Wallny H et al. Multiple HLA-A alleles can present an immunodominant peptide of the human melanoma antigen Melan-A/MART-1 to a peptide-specific HLA-A*0201+ 111. cytotoxic T cell line. Journal of Immu-nology 1996; 157: 787–97.

    CAS  Google Scholar 

  101. Burrows SR, Gardner J, Khanna R et al. Five new cytotoxic T cell epitopes identified within Epstein-Barr virus nuclear antigen 3. J Gen Virol 1994; 75: 2489–93.

    PubMed  CAS  Google Scholar 

  102. Sudo T, Kamikawaji N, Kimura A et al. 112. Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J Immunol 1995; 155: 4749–56.

    PubMed  CAS  Google Scholar 

  103. Rötzschke O, Falk K, Stevanovie S et al. Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol 1992; 22: 2453–6. 113.

    Google Scholar 

  104. DiBrino M, Parker KC, Shiloach J et al. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc Natl Acad Sci U S A 1993; 90: 1508–12.

    PubMed  CAS  Google Scholar 

  105. Maier R, Falk K, Rötzschke O et al. Peptide motifs of HLA-A3, -A24, and -B7 molecules as determined by pool se- 114. quencing. Immunogenetics 1994; 40: 306–8.

    PubMed  CAS  Google Scholar 

  106. Poindexter NJ, Naziruddin B, McCourt DW et al. Isolation of a kidney-specific peptide recognized by alloreactive HLA- A3-restricted human CTL. J Immunol 115. 1995; 154: 3880–7.

    Google Scholar 

  107. Skipper JCA, Kittlesen DJ, Hendrickson RC et al. Shared epitopes for HLA-A3restricted melanoma-reactive human CTL include a naturally processed epi- 116. tope from Pmel-17/gp100. J Immunol 1996; 157: 5027–33.

    PubMed  CAS  Google Scholar 

  108. Takahashi K, Dai LC, Fuerst TR et al. Specific lysis of human immunodefi- ciency virus type 1-infected cells by a 117. HLA-A3.1-restricted CD8’ cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc Natl Acad Sci U S A 1991; 88: 10277–81.

    PubMed  CAS  Google Scholar 

  109. Koenig S, Fuerst TR, Wood LV et al. Mapping the fine specificity of a cytolytic T cell response to HIV-1 nef protein. J Immunol 1990; 145: 127–35.

    PubMed  CAS  Google Scholar 

  110. Venet A, Walker BD. Cytotoxic T-cell 119. epitopes in HIV/SIV infection. AIDS 1993; 7 Suppl 1: S117–26.

    Google Scholar 

  111. Hill AB, Lee SP, Haurum JS et al. Class I major histocompatibility complex-restricted cytotoxic T lymphocytes specific for Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines against which they were raised. J Exp Med 1995; 181: 2221–8.

    PubMed  CAS  Google Scholar 

  112. Safrit JT, Andrews CA, Zhu T et al. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J Exp Med 1994; 179: 463–72.

    PubMed  CAS  Google Scholar 

  113. Johnson RP, Hammond SA, Trocha A et al. Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine. J Virol 1994; 68: 3145–53.

    PubMed  CAS  Google Scholar 

  114. Koziel MJ, Dudley D, Afdhal N et al. HLA class I-restricted cytotoxic T lymphocytes specific for hepatitis C virus. Identification of multiple epitopes and characterization of patterns of cytokine release. J Clin Invest 1995; 96: 2311–21.

    PubMed  CAS  Google Scholar 

  115. Zhang QJ, Gavioli R, Klein G et al. An HLA-Al 1-specific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci U S A 1993; 90: 2217–21.

    PubMed  CAS  Google Scholar 

  116. Tsai SL, Chen MH, Yeh CT et al. Purification and characterization of a naturally processed hepatitis B virus peptide recognized by CD8+ cytotoxic T lymphocytes. J Clin Invest 1996; 97: 577–84

    PubMed  CAS  Google Scholar 

  117. Gavioli R, Kurilla MG, de Campos Lima PO et al. Multiple HLA All-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol 1993; 67: 1572–8.

    Google Scholar 

  118. Couillin I, Connan F, Culmann Penciolelli B et al. HLA-dependent variations in human immunodeficiency virus Nef protein alter peptide/HLA binding. Eur J Immunol 1995; 25: 728–32.

    PubMed  CAS  Google Scholar 

  119. Domenech N, Henderson RA, Finn OJ. Identification of an HLA-A1 1-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J Immunol 1995; 155: 4766–74.

    PubMed  CAS  Google Scholar 

  120. Culmann B, Gomard E, Kieny MP et al. Six epitopes reacting with human cytotoxic CD8+ T cells in the central region of the HIV-1 NEF protein. J Immunol 1991; 146: 1560–5.

    PubMed  CAS  Google Scholar 

  121. Merkel F, Kalluri R, Marx M et al. Autoreactive T-cells in Goodpasture’s syndrome recognize the N-terminal NCI domain on alpha 3 type IV collagen. Kidney Int 1996; 49: 1127–33.

    PubMed  CAS  Google Scholar 

  122. Sipsas NV, Kalams SA, Trocha A et al. Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1. J Clin Invest 1997; 99: 752–62.

    PubMed  CAS  Google Scholar 

  123. Robbins PF, el Gamil M, Li YF et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996; 183: 1185–92.

    PubMed  CAS  Google Scholar 

  124. Dai LC, West K, Littaua R et al. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J Virol 1992; 66: 3151–4.

    PubMed  CAS  Google Scholar 

  125. Robbins PF, el Gamil M, Li YF et al. Cloning of a new gene encoding an antigen recognized by melanoma-specific HLA-A24-restricted tumor-infiltrating lymphocytes. J Immunol 1995; 154: 5944–50.

    PubMed  CAS  Google Scholar 

  126. Kang X, Kawakami Y, el Garnil M et al. Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol 1995; 155: 1343–8.

    PubMed  CAS  Google Scholar 

  127. van Baalen CA, Klein MR, Huisman RC et al. Fine-specificity of cytotoxic T lymphocytes which recognized conserved epitopes of the GAG protein of human immunodeficiency virus type 1. J Gen Virol 1996; 77: 1659–65.

    Google Scholar 

  128. Boisgerault F, Khalil I, Tieng V et al. Definition of the HLA-A29 peptide ligand motif allows predicition of potential T-cell epitopes from the retinal soluble antigen, a candidate autoantigen in birdshot retinopathy. Proc Natl Acad Sci U S A 1996; 93: 3466–70.

    PubMed  CAS  Google Scholar 

  129. Missale G, Redeker A, Person J et al. HLA-A31- and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med 1993; 177: 751–62.

    PubMed  CAS  Google Scholar 

  130. Wang RF, Parkhurst MR, Kawakami Y et al. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 1996; 183: 1131–40.

    PubMed  CAS  Google Scholar 

  131. Wang R, Appella E, Kawakami Y et al. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207–16.

    PubMed  CAS  Google Scholar 

  132. Buseyne F, McChesney M, Porrot F et al. Gag-specific cytotoxic T lymphocytes from human immunodeficiency virus type 1-infected individuals: Gag epitopes are clustered in three regions of the p24gag protein. J Virol 1993; 67: 694–702.

    PubMed  CAS  Google Scholar 

  133. Buseyne F, Riviere Y. HIV-specific CD8+ T-cell immune responses and viral replication. AIDS 1993; 7 Suppl 2: S81–5.

    Google Scholar 

  134. Guo HC, Jardetzky TS, Garrett TP et al. Different length peptides bind to HLAAw68 similarly at their ends but bulge out in the middle. Nature 1992; 360: 364–6.

    PubMed  CAS  Google Scholar 

  135. Silver ML, Guo HC, Strominger JL et al. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 1992; 360: 367–9.

    PubMed  CAS  Google Scholar 

  136. Huczko EL, Bodnar WM, Benjamin D et al. Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 1993; 151: 2572–87.

    PubMed  CAS  Google Scholar 

  137. Wang W, Meadows LR, den Haan JM et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 1995; 269: 1588–90.

    Google Scholar 

  138. Hill A, Worth A, Elliott T et al. Characterization of two Epstein-Barr virus epitopes restricted by HLA-B7. Eur J Immunol 1995; 25: 18–24.

    PubMed  CAS  Google Scholar 

  139. Gaugler B, Brouwenstijn N, Vantomme V et al. A new gene coding for an anti-gen recognized by autologous cytolytic T lymphocytes on a human renal carci- noma. Immunogenetics 1996; 44: 323–30.

    PubMed  CAS  Google Scholar 

  140. Gnjatie S, Bressac de Paillerets B, Guillet JG et al. Mapping and ranking of potential cytotoxic T epitopes in the p53 pro-150. tein: effect of mutations and polymorphism on peptide binding to purified and refolded HLA molecules. Eur J Immunol 1995; 25: 1638–42.

    Google Scholar 

  141. Ellis JR, Keating PI, Baird J et al. The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer binding of a peptide antigen to multiple HLA al- leles allows definition of an A2-like supertype. Nat Med 1995; 1: 464–70.

    PubMed  CAS  Google Scholar 

  142. Smith KD, Epperson DF, Lutz CT. Alloreactive cytotoxic T-lymphocyte-defined HLA-B7 subtypes differ in peptide antigen presentation. Immunogenetics 1995; 43: 27–37

    Google Scholar 

  143. Barber LD, Gillece-Castro B, Percival L et al. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol 1995; 5: 179–90.

    PubMed  CAS  Google Scholar 

  144. Malcherek G, Falk K, Rötzschke O et al. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int Immunol 1993; 154. 5: 1229–37.

    Google Scholar 

  145. Sutton J, Rowland Jones S, Rosenberg W et al. A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA B8 revealed by analysis of epitopes and eluted peptides. Eur J Immunol 1993; 23: 447–53.

    PubMed  CAS  Google Scholar 

  146. DiBrino M, Parker KC, Margulies DH et al. The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. J Biol Chem 1994; 269: 32426–34.

    PubMed  CAS  Google Scholar 

  147. Burrows SR, Sculley TB, Misko IS et al. An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3). J Exp Med 1990; 171: 345–9.

    PubMed  CAS  Google Scholar 

  148. Phillips RE, Rowland Jones S, Nixon DF et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354: 453–9.

    PubMed  CAS  Google Scholar 

  149. Achour A, Picard O, Zagury D et al. HGP-30, a synthetic analogue of human immunodeficiency virus (HIV) p17, is a target for cytotoxic lymphocytes in HIV-infected individuals. Proc Natl Acad Sci U S A 1990; 87: 7045–9.

    PubMed  CAS  Google Scholar 

  150. Johnson RP, Trocha A, Buchanan TM et al. Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J Exp Med 1992; 175: 961–71.

    PubMed  CAS  Google Scholar 

  151. Wizel B, Houghten RA, Parker KC et al. Irradiated sporozoite vaccine induces HLA-B8-restricted cytotoxic T lymphocyte responses against two overlapping epitopes of the Plasmodium falciparum sporozoite surface protein 2. J Exp Med 1995; 182: 1435–45.

    PubMed  CAS  Google Scholar 

  152. Phillips RE, Rowland-Jones S, Nixon DF et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature (London) 1991; 354: 453–559.

    CAS  Google Scholar 

  153. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics 1995; 41: 165–8.

    PubMed  CAS  Google Scholar 

  154. Barber LD, Percival L, Valiante NM et al. The inter-locus recombinant HLAB*4601 has high selectivity in peptide binding and functions characteristic of HLA-C. J Exp Med 1996; 184: 735–40.

    PubMed  Google Scholar 

  155. Kowalski H, Erickson AL, Cooper S et al. Patr-A and B, the orthologues of HLA-A and B, present hepatitis C virus epitopes to CD8’ cytotoxic T cells from two chronically infected chimpanzees. J Exp Med 1996; 183: 1761–75.

    PubMed  CAS  Google Scholar 

  156. Carmichael A, Jin Y, Sissons P. Analysis of the human env-specific cytotoxic T-lymphocyte (CTL) response in natural human immunodeficiency virus Type 1 infection: Low prevalence of broadly cross-reactive env-specific CTL. J Virol 1996; 70: 8468–76.

    PubMed  CAS  Google Scholar 

  157. Gavin MA, Gilbert MJ, Riddell SR et al. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol 1993; 151: 3971–80.

    PubMed  CAS  Google Scholar 

  158. Rötzschke O, Falk K, Stevanovic S et al. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics 1994; 39: 74–7.

    PubMed  Google Scholar 

  159. Verjans GM, Janssen R, UytdeHaag FG et al. Intracellular processing and presentation of T cell epitopes, expressed by recombinant Escherichia coli and Salmonella typhimurium, to human T cells. Eur J Immunol 1995; 25: 405–10.

    PubMed  CAS  Google Scholar 

  160. Huang F, Hermann E, Wang J et al. A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent monoclonal antibodies recognize HLA-B27peptide complexes with low stringency for peptide sequences. Infect Immun 1996; 64: 120–7.

    PubMed  CAS  Google Scholar 

  161. Nietfield W, Bauer M, Fevrier M et al. Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J Immunol 1995; 154: 2189–97.

    PubMed  CAS  Google Scholar 

  162. Tussey LG, Rowland Jones S, Zheng TS et al. Different MHC class I alleles compete for presentation of overlapping viral epitopes. Immunity 1995; 3: 65–77.

    PubMed  CAS  Google Scholar 

  163. Shepherd JC, Schumacher TN, Ashton Rickardt PG et al. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective [published erratum appears in Cell 1993; 75:613]. Cell 1993; 74: 577–84.

    PubMed  CAS  Google Scholar 

  164. Fiorillo MT, Meadows L, D’Amato M et al. Susceptibility to ankylosing spondylitis correlates with the C-terminal residue of peptides presented by various HLA-B27 subtypes. Eur J Immunol 1997; 27: 368–73.

    PubMed  CAS  Google Scholar 

  165. Frumento G, Harris PE, Gawinowicz MA et al. Sequence of a prominent 16-residue self-peptide bound to HLA-B27 in a lymphoblastoid cell line. Cell Immunol 1993; 152: 623–6.

    PubMed  CAS  Google Scholar 

  166. Huet S, Nixon DF, Rothbard JB et al. Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27. Int Immunol 1990; 2: 311–6.

    PubMed  CAS  Google Scholar 

  167. van Binnendijk RS, Versteeg van Oosten JP, Poelen MC et al. Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J Virol 1993; 67: 2276–84.

    Google Scholar 

  168. Brooks JM, Murray RJ, Thomas WA et al. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J Exp Med 1993; 178: 879–87.

    PubMed  CAS  Google Scholar 

  169. Cerrone MC, Ma JJ, Stephens RS. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun 1991; 59: 79–90.

    PubMed  CAS  Google Scholar 

  170. Hill AV, Elvin J, Willis AC et al. Molecular analysis of the association of HLAB53 and resistance to severe malaria. Nature 1992; 360: 434–9.

    PubMed  CAS  Google Scholar 

  171. Falk K, Rötzschke O, Grahovae B et al. Peptide motifs of HLA-B35 and -B37’ molecules [published erratum appears in Immunogenetics 1994; 39:379]. Immunogenetics 1993; 38: 161–2.

    PubMed  CAS  Google Scholar 

  172. Koziel MJ, Dudley D, Wong IT et al. Intrahepatic cytotoxic T lymphocytes specific for hepatitis C virus in persons with chronic hepatitis [published erratum appears in J Immunol 1993; 150:2563]. J Immunol 1992; 149: 3339–44.

    CAS  Google Scholar 

  173. Lee SP, Morgan S, Skinner J et al. Epstein-Barr virus isolates with the major HLA B35.01-restricted cytotoxic T lymphocyte epitope are prevalent in a highly B35.01-positive African population. Eur J Immunol 1995; 25: 102–10.

    PubMed  CAS  Google Scholar 

  174. Livingston PG, Kurane I, Dai LC et al. Dengue virus-specific, HLA-B35-restricted, human CD8+ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities. J Immunol 1995; 154: 1287–95.

    PubMed  CAS  Google Scholar 

  175. Zivny J, Kurane I, Leporati AM et al. A single nine-amino acid peptide induces virus-specific, CD8’ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities. J Exp Med 1995; 182: 853–63.

    PubMed  CAS  Google Scholar 

  176. Shiga H, Shioda T, Tomiyama H et al. Identification of multiple HIV-1 cytotoxic T-cell epitopes presented by human leukocyte antigen B35 molecules. AIDS 1996; 10: 1075–83.

    PubMed  CAS  Google Scholar 

  177. Schönbach C, Ibe M, Shiga H et al. Fine tuning of peptide binding to HLAB*3501 molecules by nonanchor residues. J Immunol 1995; 154: 5951–8.

    PubMed  Google Scholar 

  178. Ferris RL, Buck C, Hammond SA et al. Class I-restricted presentation of an HIV-1 gp41 epitope containing an N-linked glycosylation site. Implications for the mechanism of processing of viral envelope proteins. J Immunol 1996; 156: 834–40.

    PubMed  CAS  Google Scholar 

  179. Steinle A, Falk K, Rötzschke O et al. Motif of HLA-B*3503 peptide ligands. Immunogenetics 1996; 43: 105–7.

    PubMed  CAS  Google Scholar 

  180. Townsend AR, Rothbard J, Gotch FM et al. The epitopes of influenza nucleopro-. tein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986; 44: 959–68.

    PubMed  CAS  Google Scholar 

  181. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics 1995; 41: 162–4.

    PubMed  CAS  Google Scholar 

  182. Kaneko T, Nakamura I, Kita H et al. Three new cytotoxic T cell epitopes iden- tified within the hepatitis C virus nude- 192. oprotein. J Gen Virol 1996; 77: 1305–9.

    PubMed  CAS  Google Scholar 

  183. DiBrino M, Parker KC, Margulies DH et al. Identification of the peptide binding motif for HLA-B44, one of the most 193. common HLA-B alleles in the Caucasian population. Biochemistry 1995; 34: 10130–8.

    PubMed  CAS  Google Scholar 

  184. Moss DJ, Burrows SR, Khanna R et al.. Immune surveillance against Epstein-Barr virus. Semin Immunol 1992; 4: 97–104.

    PubMed  CAS  Google Scholar 

  185. Fleischhauer K, Avila D, Vilbois F et al. Characterization of natural peptide ligands for HLA-B*4402 and -B*4403: 195. implications for peptide involvement in allorecognition of a single amino acid change in the HLA-B44 heavy chain. Tissue Antigens 1994; 44: 311–7.

    CAS  Google Scholar 

  186. Brichard VG, Herman J, Van Pel A et al. A tyrosinase nonapeptide presented by HLA-B44 is recognized on a human melanoma by autologous cytolytic T lymphocytes. Eur J Immunol 1996; 26: 224–30.

    PubMed  CAS  Google Scholar 

  187. Herman J, van der Bruggen P, Luescher IF et al. A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells express-ing MAGE3. Immunogenetics 1996; 43: 377–83.

    PubMed  CAS  Google Scholar 

  188. Coulie PG, Lehmann F, Lethe B et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A 1995; 92: 7976–80.

    PubMed  CAS  Google Scholar 

  189. Khanna R, Burrows SR, Kurilla MG et al. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 1992; 176: 169–76.

    PubMed  CAS  Google Scholar 

  190. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-B51, -B52 and -B78 molecules, and implications for Behcet’s disease. Int Immunol 1995; 7: 223–8.

    PubMed  CAS  Google Scholar 

  191. Gotch F, McAdam SN, Allsopp CE et al. Cytotoxic T cells in HIV2 seropositive Gambians. Identification of a virus-specific MHC-restricted peptide epitope. J Immunol 1993; 151: 3361–9.

    PubMed  CAS  Google Scholar 

  192. Barber LD, Percival L, Parham P. Characterization of the peptide-binding specificity of HLA-B*7301. Tissue Antigens 1996; 47: 472–7.

    PubMed  CAS  Google Scholar 

  193. Falk K, Rötzschke O, Grahovae B et al. Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci U S A 1993; 90: 12005–9.

    PubMed  CAS  Google Scholar 

  194. Littaua RA, Oldstone MB, Takeda A et al. An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. J Virol 1991; 65: 4051–6.

    PubMed  CAS  Google Scholar 

  195. Tzeng C, Adams EJ, Gumperz JE et al. Peptides bound endogenously by HLACw*0304 expressed in LCL 721.221 cells include a peptide derived from HLA-E. Tissue Antigens 1996; 48: 325–8.

    PubMed  CAS  Google Scholar 

  196. Johnson RP, Trocha A, Buchanan TM et al. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993; 67: 438–45.

    PubMed  CAS  Google Scholar 

  197. van den Eynde B, Peeters O, De Backer O et al. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 1995; 182: 689–98.

    PubMed  Google Scholar 

  198. Boel P, Wildmann C, Sensi ML et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995; 2: 167–75.

    PubMed  CAS  Google Scholar 

  199. Diehl M, Münz C, Keilholz W et al. Nonclassical HLA-G molecules are classical peptide presenters. Current Biology 1996; 6: 305–14.

    PubMed  CAS  Google Scholar 

  200. Lee N, Malacko AR, Ishitani A et al. The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 1995; 3: 591–600.

    PubMed  CAS  Google Scholar 

  201. Rötzschke O, Falk K, Deres K et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348: 252–4.

    PubMed  Google Scholar 

  202. Falk K, Rötzschke O, Deres K et al. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 1991; 174: 425–34.

    PubMed  CAS  Google Scholar 

  203. Harpur AG, Zimiecki A, Wilks AF et al. A prominent natural H-2 Kd ligand is derived from protein tyrosine kinase JAK1. Immunol Lett 1993; 35: 235–7.

    PubMed  CAS  Google Scholar 

  204. Sibille C, Chomez P, Wildmann C et al. Structure of the gene of turn-transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 1990; 172: 35–45.

    PubMed  CAS  Google Scholar 

  205. Wallny HJ, Deres K, Faath S et al. Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int Immunol 1992; 4: 1085–90.

    PubMed  CAS  Google Scholar 

  206. Pamer EG, Harty JT, Bevan MJ. Precise prediction of a dominant class I MHCrestricted epitope of Listeria monocytogenes. Nature 1991; 353: 852–5.

    PubMed  CAS  Google Scholar 

  207. Pamer EG. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 1994; 152: 686–94.

    PubMed  CAS  Google Scholar 

  208. Reich EP, von Grafenstein H, Barlow A et al. Self peptides isolated from MHC glycoproteins of nonobese diabetic mice. J Immunol 1994; 152: 2279–88.

    Google Scholar 

  209. Sijts AJ, Neisig A, Neefjes J et al. Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J Immunol 1996; 156: 683–92.

    PubMed  CAS  Google Scholar 

  210. Braciale TJ, Braciale VL, Winkler M et al. On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolytic T lymphocytes. J Exp Med 1987; 166: 678–92.

    PubMed  CAS  Google Scholar 

  211. Cao W, Myers Powell BA, Braciale TJ. Recognition of an immunoglobulin VH epitope by influenza virus-specific class I major histocompatibility complex-restricted cytolytic T lymphocytes. J Exp Med 1994; 179: 195–202.

    PubMed  CAS  Google Scholar 

  212. Kuwano K, Braciale TJ, Ennis FA. Localization of a cross-reactive CTL epitope to the transmembrane region on the hemaglutinin of influenza H1 and H2 viruses. FASEB J 1988; 2: 2221.

    Google Scholar 

  213. Maryanski JL, Pala P, Corradin G et al. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature 1986; 324: 578–9.

    PubMed  CAS  Google Scholar 

  214. Romero P, Maryanski JL, Corradin G et al. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 1989; 341: 323–6.

    PubMed  CAS  Google Scholar 

  215. Weiss WR, Mellouk S, Houghten RA et al. Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 1990; 171: 763–73.

    PubMed  CAS  Google Scholar 

  216. Kulkarni AB, Morse HC III, Bennink JR et al. Immunization of mice with vaccinia virus-M2 recombinant induces epitope-specific and cross-reactive Kd-restricted CD8’ cytotoxic T cells. J Virol 1993; 67: 4086–92.

    Google Scholar 

  217. Banks TA, Nair S, Rouse BT. Recognition by and in vitro induction of cytotoxic T lymphocytes against predicted epitopes of the immediate-early protein ICP27 of herpes simplex virus. J Virol 1993; 67: 613–6.

    PubMed  CAS  Google Scholar 

  218. Kutubuddin M, Simons J, Chow M. Poliovirus-specific major histocompatibility complex class I-restricted cytolytic T-cell epitopes in mice localize to neutralizing antigenic regions. J Virol 1992; 66: 5967–74.

    PubMed  CAS  Google Scholar 

  219. Blum-Tirouvanziam U, Beghdadi-Rais C, Roggero MA et al. Elicitation of specific cytotoxic T cells by immunization with malaria soluble synthetic polypeptides. J Immunol 1994; 153: 4134–41.

    PubMed  CAS  Google Scholar 

  220. Townsend A, Ohlen C, Rogers M et al. Source of unique tumour antigens. Nature 1994; 371: 662.

    PubMed  CAS  Google Scholar 

  221. Renggli J, Valmori D, Romero JF et al. CD8’ T-cell protective immunity induced by immunization with Plasmodium berghei CS protein-derived synthetic peptides: evidence that localization of peptide-specific CTLs is crucial for protection against malaria. Immunol Lett 1995; 46: 199–205.

    PubMed  CAS  Google Scholar 

  222. Cao W, Tykodi SS, Esser MT et al. Partial activation of CD8’ T cells by a self-derived peptide. Nature 1995; 378: 295–8.

    PubMed  CAS  Google Scholar 

  223. Wei WZ, Gill RF, Jones RF et al. Induction of cytotoxic T lymphocytes to murine mammary tumor cells with a Kdrestricted immunogenic peptide. Int J Cancer 1996; 66: 659–63.

    PubMed  CAS  Google Scholar 

  224. Ciernik F, Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 1996; 156: 2369–75.

    PubMed  CAS  Google Scholar 

  225. Abrams SI, Stanziale SF, Lunin SD et al. Identification of overlapping epitopes in mutant ras oncogene peptides that activate CD4’ and CD8’ T cell responses. Eur J Immunol 1996; 26: 435–43.

    PubMed  CAS  Google Scholar 

  226. Doe B, Selby M, Barnett S et al. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci U S A 1996; 93: 8578–83.

    PubMed  CAS  Google Scholar 

  227. Yamazaki H, Tanaka M, Nagoya M et al. Epitope selection in major histocompatibility complex class I-mediated pathway is affected by the intracellular localization of an antigen. Eur J Immunol 1997; 27: 347–53.

    PubMed  CAS  Google Scholar 

  228. Bertholet S, Iggo R, Corradin G. Cytotoxic T lymphocyte responses to wild-type and mutant mouse p53 peptides. Eur J Immunol 1997; 27: 798–801.

    PubMed  CAS  Google Scholar 

  229. Corr M, Boyd LF, Padlan EA et al. H2Dd exploits a four residue peptide binding motif. J Exp Med 1993; 178: 1877–92.

    PubMed  CAS  Google Scholar 

  230. Szikora JP, Van Pel A, Boon T. Turnmutation P35B generates the MHC-binding site of a new antigenic peptide. Immunogenetics 1993; 37: 135–8.

    PubMed  CAS  Google Scholar 

  231. Takahashi H, Cohen J, Hosmalin A et al. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 1988; 85: 3105–9.

    PubMed  CAS  Google Scholar 

  232. Bergmann C, Stohlmann SA, McMillan M. An endogenously synthesized de-camer peptide efficiently primes cytotoxic T cells specific for the HIV-1 envelope glycoprotein. Eur J Immunol 1993; 23: 2777–81.

    PubMed  CAS  Google Scholar 

  233. Rehermann B, Chang K, McHutchison JG et al. Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection. J Clin Invest 1996; 98: 1432–40.

    PubMed  CAS  Google Scholar 

  234. Shirai M, Chen M, Arichi T et al. Use of intrinsic and extrinsic helper epitopes for in vivo induction of anti-hepatitis C virus cytotoxic T lymphocytes (CTL) with CTL epitope peptide vaccines. J Infect Dis 1996; 173: 24–31.

    PubMed  CAS  Google Scholar 

  235. Corr M, Boyd LF, Frankel SR et al. Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 1992; 176: 1681–92.

    PubMed  CAS  Google Scholar 

  236. Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989; 337: 651–3.

    PubMed  CAS  Google Scholar 

  237. Udaka K, Tsomides TJ, Eisen HN. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 1992; 69: 989–98.

    PubMed  CAS  Google Scholar 

  238. Udaka K, Tsomides TJ, Walden P et al. A ubiquitous protein is the source of naturally occurring peptides that are recognized by a CD8’ T-cell clone. Proc Natl Acad Sci U S A 1993; 90: 11272–6.

    PubMed  CAS  Google Scholar 

  239. McCormick D, Stauss HJ, Thorpe C et al. Major histocompatibility complex and T cell receptor interaction of the P91 turn–peptide. Eur J Immunol 1996; 26: 2895–902.

    PubMed  CAS  Google Scholar 

  240. Whitton JL, Tishon A, Lewicki H et al. Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol 1989; 63: 4303–10.

    PubMed  CAS  Google Scholar 

  241. Schulz M, Aichele P, Schneider R et al. Major histocompatibility complex binding and T cell recognition of a viral nonapeptide containing a minimal tetra-peptide. Eur J Immunol 1991; 21: 1181–5.

    PubMed  CAS  Google Scholar 

  242. Lurquin C, Van Pel A, Mariame B et al. Structure of the gene of turn-transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 1989; 58: 293–303.

    PubMed  CAS  Google Scholar 

  243. Lethé B, van den Eynde B, Van Pel A et al. Mouse tumor rejection antigens P815A and P815B: two epitopes carried by a single peptide. Eur J Immunol 1992; 22: 2283–8.

    PubMed  Google Scholar 

  244. Bergmann C, McMillan M, Stohlman S. Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis virus nucleocapsid protein. J Virol 1993; 67: 7041–9.

    PubMed  CAS  Google Scholar 

  245. Beauverger P, Buckland R, Wild TF. Measles virus antigens induce both type-specific and canine distemper virus cross-reactive cytotoxic T lymphocytes in mice: localization of a common Ld-restricted nucleoprotein epitope. J Gen Virol 1993; 74: 2357–63.

    PubMed  CAS  Google Scholar 

  246. Beauverger P, Buckland R, Wild F. Measles virus hemagglutinin induces an Ld-restricted CD8 cytotoxic T lymphocyte response to two specific epitopes. Virology 1994; 200: 281–3.

    PubMed  CAS  Google Scholar 

  247. Wu MX, Tsomides TJ, Eisen HN. Tissue distribution of natural peptides derived from a ubiquitous dehydrogenase, including a novel liver-specific peptide that demonstrates the pronounced specificity of low affinity T cell reactions. J Immun 1995; 154: 4495–502.

    PubMed  CAS  Google Scholar 

  248. van den Eynde B, Mazarguil H, Lethé B et al. Localization of two cytotoxic T lymphocyte epitopes and three anchoring residues on a single nonameric peptide that binds to H-2Ld and is recog-nized by cytotoxic T lymphocytes against mouse tumor P815. Eur J Immunol 1994; 24: 2740–5.

    PubMed  Google Scholar 

  249. Schirmbeck R, Melber K, Kuhrober A et al. Immunization with soluble hepatitis B virus surface protein elicits murine H2 class I-restricted CD8’ cytotoxic T lymphocyte responses in vivo. J Immunol 1994; 152: 1110–9.

    PubMed  CAS  Google Scholar 

  250. Bergmann CC, Stohlman SA. Specificity of the H-2 L(d)-restricted cytotoxic T-lymphocyte response to the mouse hepatitis virus nucleocapsid protein. J Virol 1996; 70: 3252–7.

    PubMed  CAS  Google Scholar 

  251. Bergmann CC, Tong L, Cua RV et al. Cytotoxic T cell repertoire selection-A single amino acid determines alternative class I restriction. J Immunol 1994; 152: 5603–12.

    PubMed  CAS  Google Scholar 

  252. Huang AYC, Gulden PH, Woods AS et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A 1996; 93: 9730–5.

    PubMed  CAS  Google Scholar 

  253. Sykulev Y, Joo M, Vturina I et al. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 1996; 4: 565–71.

    PubMed  CAS  Google Scholar 

  254. van Bleek GM, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 1990; 348: 213–6.

    Google Scholar 

  255. Rötzschke O, Falk K, Stevanovie S et al. Exact prediction of a natural T cell epitope. Eur J Immunol 1991; 21: 2891–4.

    PubMed  Google Scholar 

  256. Carbone FR, Moore MW, Sheil JM et al. Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 1988; 167: 1767–79.

    PubMed  CAS  Google Scholar 

  257. Wallny HJ. Untersuchungen zur Rolle der MHC-Klasse-I-Moleküle bei der Prozessierung von Nebenhistokompatibilitätsantigenen 1992; Universität Tübingen.

    Google Scholar 

  258. Brossart P, Bevan MJ. Selective activation of Fas/Fas ligand-mediated cytotoxicity by a self peptide. J Exp Med 1996; 183: 2449–58.

    PubMed  CAS  Google Scholar 

  259. Tallquist MD, Yun TJ, Pease LR. A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J Exp Med 1996; 184: 1017–26.

    PubMed  CAS  Google Scholar 

  260. Malarkannan S, Gonzalez F, Nguyen V et al. Alloreactive CD8’ T cell can recognize unusual, rare, and unique processed peptide/MHC complexes. J Immunol 1996; 157: 4464–73.

    PubMed  CAS  Google Scholar 

  261. Malarkannan S, Serwold T, Nguyen V et al. The mouse mammary tumor virus env gene is the source of a CD8’ T-cellstimulating peptide presented by a major histocompatibility complex class I molecule in a murine thymoma. Proc Natl Acad Sci USA 1996; 93: 13991–6.

    PubMed  CAS  Google Scholar 

  262. Franco MA, Prieto I, Labbe M et al. An immunodominant cytotoxic T cell epitope on the VP7 rotavirus protein overlaps the H2 signal peptide. J Gen Virol 1993; 74: 2579–86.

    PubMed  CAS  Google Scholar 

  263. Bonneau RH, Salvucci LA, Johnson DC et al. Epitope specificity of H-2Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 1993; 195: 62–70.

    PubMed  CAS  Google Scholar 

  264. Kast WM, Roux L, Curren J et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A 1991; 88: 2283–7.

    PubMed  CAS  Google Scholar 

  265. Schumacher TN, De Bruijn ML, Vernie LN et al. Peptide selection by MHC class I molecules. Nature 1991; 350: 703–6.

    PubMed  CAS  Google Scholar 

  266. Sijts AJ, Ossendorp F, Mengede EA et al. Immunodominant mink cell focus-inducing murine leukemia virus (MuLV)encoded CTL epitope, identified by its MHC class I-binding motif, explains MuLV-type specificity of MCF-directed cytotoxic T lymphocytes. J Immunol 1994; 152: 106–16.

    PubMed  CAS  Google Scholar 

  267. White HD, Roeder DA, Green WR. An immunodominant Kb-restricted peptide from the pl5E transmembrane protein of endogenous ecotropic murine leukemia virus (MuLV) AKR623 that restores susceptibility of a tumor line to anti-AKR/ gross MuLV cytotoxic T lymphocytes [published erratum appears in J Virol 1994; 68:3452]. J Virol 1994; 68: 897–904.

    CAS  Google Scholar 

  268. Franco MA, Lefévre P, Willems P et al. Identification of cytotoxic T cell epitopes on the VP3 and VP6 rotavirus proteins. J Gen Virol 1994; 75: 589–96.

    PubMed  CAS  Google Scholar 

  269. Mandelboim O, Berke G, Fridkin M et al. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature 1994; 369: 67–71.

    PubMed  CAS  Google Scholar 

  270. Mylin LM, Deckhut AM, Bonneau RH et al. Cytotoxic T lymphocyte escape variants, induced mutations, and synthetic peptides define a dominant H-2Kb-restricted deteriminant in Simian Virus 40 tumor antigen. Virology 1995; 208: 159–72.

    PubMed  CAS  Google Scholar 

  271. Sheil JM, Shepherd SE, Klimo GF et al. Identification of an autologous insulin B chain peptide as a target antigen for H2Kb-restricted cytotoxic T lymphocytes. J Exp Med 1992; 175: 545–52.

    PubMed  CAS  Google Scholar 

  272. Liu T, Zhou X, Orvell C et al. Heat-inactivated Sendai virus can enter multiple MHC class I processing pathways and generate cytotoxic T lymphocyte responses in vivo. J Immunol 1995; 154: 3147–55.

    PubMed  CAS  Google Scholar 

  273. Walden P, Wiesmuller KH, Jung G. Elucidation of T-cell epitopes: a synthetic approach with random peptide libraries. Biochem Soc Trans 1995; 23: 678–81.

    PubMed  CAS  Google Scholar 

  274. Neisig A, Roelse J, Sijts AJ et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 1995; 154: 1273–9.

    PubMed  CAS  Google Scholar 

  275. Salvucci LA, Bonneau RH, Tevethia SS. Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes. J Virol 1995; 69: 1122–31.

    PubMed  CAS  Google Scholar 

  276. Udaka K, Wiesmüller K, Kienle S et al. Self-MHC restricted peptides recognized by an alloreactive T lymphocyte clone. Journal of Immunology 1996; 157: 670–8.

    CAS  Google Scholar 

  277. Dahl AM, Beverley PC, Stauss HJ. A synthetic peptide derived from the tumor-associated protein mdm2 can stimulate autoreactive, high avidity cytotoxic T lymphocytes that recognize naturally processed protein. J Immunol 1996; 157: 239–46.

    PubMed  CAS  Google Scholar 

  278. Blake J, Johnston JV, Hellstrom KE et al. Use of combinatorial peptide libraries to construct functional mimics of tumor epitopes recognized by MHC class I-restricted cytolytic T lymphocytes. J Exp Med 1996; 184: 121–30.

    PubMed  CAS  Google Scholar 

  279. Gundlach BR, Wiesmüller KH, Junt T et al. Specificity and degeneracy of minor histocompatibility antigen-specific MHCrestricted CTL. J Immunol 1996; 156: 3645–51.

    PubMed  CAS  Google Scholar 

  280. Kuhöber A, Pudollek HP, Reifenberg K et al. DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol 1996; 156: 3687–95.

    PubMed  Google Scholar 

  281. Chen W, Ede JN, Jackson DC et al. CTL Recognition of an altered peptide associated with asparagine bond rearrangement-implications for immunity and vaccine design. J Immunol 1996; 157: 1000–5.

    PubMed  CAS  Google Scholar 

  282. Sadovnikova E, Stauss HJ. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: Reagents for tumor immunotherapy. Proc Natl Acad Sci U S A 1996; 93: 13114–8.

    PubMed  CAS  Google Scholar 

  283. Dubey P, Hendrickson RC, Meredith SC et al. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp Med 1997; 185: 695–706.

    PubMed  CAS  Google Scholar 

  284. Bloom M., Perry-Lalley D, Robbins PF et al. Identification of tyrosinase-related Protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997; 185: 453–9.

    PubMed  CAS  Google Scholar 

  285. Starnbach MN, Bevan MJ. Cells infected with Yersinia present an epitope to class I MHC-restricted CTL. J Immunol 1994; 153: 1603–12.

    Google Scholar 

  286. Bergmann CC, Yao Q, Lin M et al. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J Gen Virol 1996; 77: 315–25.

    PubMed  CAS  Google Scholar 

  287. Perreault C, Jutras J, Roy DC et al. Identification of an immunodominant mouse minor histocompatibility antigen (MiHA). T cell response to a single dominant MiHA causes craft-versus-host disease. J Clin Invest 1996; 98: 622–8.

    PubMed  CAS  Google Scholar 

  288. Cerundolo V, Elliott T, Elvin J et al. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur J Immunol 1991; 21: 2069–75.

    PubMed  CAS  Google Scholar 

  289. Max H, Haider T, Kropshofer H et al. Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules. Hum Immunol 1993; 38: 193–200.

    PubMed  CAS  Google Scholar 

  290. Tevethia SS, Lewis M, Tanaka Y et al. Dissection of H-2Db-restricted cytotoxic T-lymphocyte epitopes on simian virus 40 T antigen by the use of synthetic peptides and H-2Dbm mutants. J Virol 1990; 64: 1192–200.

    PubMed  CAS  Google Scholar 

  291. Kast WM, Offringa R, Peters PJ et al. Eradication of adenovirus El-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 1989; 59: 603–14.

    PubMed  CAS  Google Scholar 

  292. Yanagi Y, Tishon A, Lewicki H et al. Diversity of T-cell receptors in virus-specific cytotoxic T lymphocytes recognizing three distinct viral epitopes restricted by a single major histocompatibility complex molecule. J Virol 1992; 66: 2527–31.

    PubMed  CAS  Google Scholar 

  293. Oldstone MB, Whitton JL, Lewicki H et al. Fine dissection of a nine amino acid glycoprotein epitope, a major determinant recognized by lymphocytic choriomeningitis virus-specific class I-restricted H-2Db cytotoxic T lymphocytes. J Exp Med 1988; 168: 559–70.

    PubMed  CAS  Google Scholar 

  294. Oldstone MB, Tishon A, Eddleston M et al. Vaccination to prevent persistent viral infection. J Virol 1993; 67: 4372–8.

    PubMed  CAS  Google Scholar 

  295. Klavinskis LS, Whitton JL, Joly E et al. Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology 1990; 178: 393–400.

    PubMed  CAS  Google Scholar 

  296. Feltkamp MC, Smits HL, Vierboom MP et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–9.

    PubMed  CAS  Google Scholar 

  297. Alsheikhly AR. Interaction of in vitro-and in vivo-generated cytotoxic T cells with SV40 T antigen: analysis with syn-thetic peptides. Scand J Immunol 1994; 39: 467–79.

    PubMed  CAS  Google Scholar 

  298. Zügel U, Schoel B, Yamamoto S et al. Crossrecognition by CD8 T cell receptor 308. alpha beta cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Eur J Immunol 1995; 25: 451–8.

    PubMed  Google Scholar 

  299. Haurum JS, Tan L, Arsequell G et al. Peptide anchor residue glycosylation: ef- 309. fect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur J Immunol 1995; 25: 3270–6.

    PubMed  CAS  Google Scholar 

  300. Toes RE, Offringa R, Blom RJ et al. An adenovirus type 5 early region 1B-en- coded CTL epitope-mediating tumor eradication by CTL clones is down-modulated by an activated ras oncogene. J Immunol 1995; 154: 3396–405.

    PubMed  CAS  Google Scholar 

  301. Chen W, Qin H, Chesebro B et al. Iden- tification of a gag-encoded cytotoxic T- 311. lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors. J Virol 1996; 70: 7773–82.

    PubMed  CAS  Google Scholar 

  302. Lacabanne V, Viguier M, Guillet J et al. 312. A wild-type p53 cytotoxic T cell epitope is presented by mouse hepatocarcinoma cells. Eur J Immunol 1996; 26: 2635–9.

    PubMed  CAS  Google Scholar 

  303. Greenfield A, Scott D, Pennisi D et al. An H-YD“ epitope is encoded by a novel mouse Y chromosome gene. Nature Ge- 313. netics 1996; 14: 474–8.

    CAS  Google Scholar 

  304. Cossins J, Gould KG, Smith M et al. Precise prediction of a Kk-restricted cytotoxic T cell epitope in the NS1 protein of influenza virus using an MHC allele- 314. specific motif. Virology 1993; 193: 289–95.

    PubMed  CAS  Google Scholar 

  305. Norda M, Falk K, Rötzschke O et al. Comparison of the H-2Kk-and H2Kkml-restricted peptide motifs. J Immunother 1993; 14: 144–9.

    CAS  Google Scholar 

  306. Gould KG, Scotney H, Brownlee GG. 315. Characterization of two distinct major histocompatibility complex class I Kkrestricted T-cell epitopes within the in- fluenza A/PR/8/34 virus hemagglutinin. J Virol 1991; 65: 5401–9.

    PubMed  CAS  Google Scholar 

  307. Burrows GG, Ariail K, Celnik B et al. Variation in H-2Kk peptide motif revealed by sequencing naturally processed peptides from T-cell hybridoma class I molecules. J of Neurosci Res 1996; 45: 803–11.

    CAS  Google Scholar 

  308. Brown EL, Wooters JL, Ferenz CR et al. Characterization of peptide binding to the murine MHC class I H-2Kk molecule. Sequencing of the bound peptides and direct binding of synthetic peptides to isolated class I molecules. J Immunol 1994; 153: 3079–92.

    PubMed  CAS  Google Scholar 

  309. Larson JK, Wunner WH, Otvos L, Jr. et al. Identification of an immunodominant epitope within the phosphoprotein of rabies virus that is recognized by both class I-and class II-restricted T cells. J Virol 1991; 65: 5673–9.

    PubMed  CAS  Google Scholar 

  310. Gould KG, Scotney H, Townsend AR et al. Mouse H-2k-restricted cytotoxic T cells recognize antigenic determinants in both the HAI and HA2 subunits of the influenza A/PR/8/34 hemagglutinin. J Exp Med 1987; 166: 693–701.

    PubMed  CAS  Google Scholar 

  311. Bastin J, Rothbard J, Davey J et al. Use of synthetic peptides of influenza nucleoprotein to define epitopes recognized by class I-restricted cytotoxic T lymphocytes. J Exp Med 1987; 165: 1508–23

    PubMed  CAS  Google Scholar 

  312. Gould K, Cossins J, Bastin J et al. A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cytotoxic T lymphocytes. J Exp Med 1989; 170: 1051–6.

    PubMed  CAS  Google Scholar 

  313. Sweetser MT, Morrison LA, Braciale VL et al. Recognition of pre-processed endogenous antigen by class I but not class II MHC-restricted T cells. Nature 1989; 342: 180–2.

    PubMed  CAS  Google Scholar 

  314. Rawle FC, O’Connell KA, Geib RW et al. Fine mapping of an H-2Kk restricted cytotoxic T lymphocyte epitope in SV40 T antigen by using in-frame deletion mutants and a synthetic peptide. J Immunol 1988; 141: 2734–9.

    PubMed  CAS  Google Scholar 

  315. Kumar S, Miller LH, Quakyi IA et al. Cytotoxic T cells specific for the circumsporozoite protein of Plasmodium falciparum. Nature 1988; 334: 258–60.

    PubMed  CAS  Google Scholar 

  316. Hosmalin A, Clerici M, Houghten R et al. An epitope in human immunodeficiency virus 1 reverse transcriptase recognized by both mouse and human cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 1990; 87: 2344–8.

    PubMed  CAS  Google Scholar 

  317. Scott DM, Ehrmann IE, Ellis PS et al. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 1995; 376: 695–8.

    PubMed  CAS  Google Scholar 

  318. Aldrich CJ, DeCloux A, Woods AS et al. Identification of a Tap-dependent leader peptide recognized by alloreactive T cells specific for a class lb antigen. Cell 1994; 79: 649–58.

    PubMed  CAS  Google Scholar 

  319. Rötzschke O, Falk K, Stevanovie S et al. Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature 1993; 361: 642–4.

    PubMed  Google Scholar 

  320. Joyce S, Tabaczewski P, Angeletti RH et al. A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides. J Exp Med 1994; 179: 579–88.

    PubMed  CAS  Google Scholar 

  321. Wang C, Castano AR, Peterson PA et al. Nonclassical binding of formylated peptide in crystal structure of the MHC class Ib molecule H2–M3. Cell 1995; 82: 655–64.

    PubMed  CAS  Google Scholar 

  322. Gulden PH, Fischer III P, Sherman NE et al. A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2–M3 MHC class lb molecule. Immunity 1996; 5: 73–9.

    Google Scholar 

  323. Fischer-Lindahl K, Hermel E, Loveland BE et al. Maternally transmitted antigen of mice: a model transplantation antigen. Annu Rev Immunol 1991; 9: 351–72.

    PubMed  CAS  Google Scholar 

  324. Loveland B, Wang CR, Yonekawa H et al. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell 1990; 60: 971–80.

    PubMed  CAS  Google Scholar 

  325. Morse MC, Bleau G, Dabhi VM et al. The COI mitochondrial gene encodes a minor histocompatibility antigen presented by H2–M3. J Immunol 1996; 156: 3301–7.

    PubMed  CAS  Google Scholar 

  326. Lenz LL, Dere B, Bevan MJ. Identification of an H2–M3-restricted Listeria epitope: Implications for Antigen presentation by M3. Immunity 1996; 5: 63–72.

    PubMed  CAS  Google Scholar 

  327. Thorpe CJ, Moss DS, Powis SJ et al. An analysis of the antigen binding site of RTI.Aa suggests an allele-specific motif. Immunogenetics 1995; 41: 329–31.

    PubMed  CAS  Google Scholar 

  328. Reizis B, Schild H, Stevanovié S et al. Peptide binding motifs of the MHC class I molecules (RT1.AI) of the Lewis rat. Immunogenetics 1997; 45: 278–9

    PubMed  CAS  Google Scholar 

  329. Hedge NR, Ellis SA, Gaddum RA et al. Peptide motif of the cattle MHC class I antigen BoLA-All. Immunogenetics 1995; 42: 302–3.

    Google Scholar 

  330. Bamford AI, Douglas A, Friede T et al. Peptide motif of a cattle MHC class I molecule. Immunol Lett 1995; 45: 129–36.

    PubMed  CAS  Google Scholar 

  331. Kaufman J, Volk H, Wallny HJ. A “minimal essential MHC” and an “unrecognized MHC”: two extremes in selection for polymorphism. Immunol Rev 1995; 143: 63–88.

    PubMed  CAS  Google Scholar 

  332. Cooper S, Kowalski H, Erickson AL et al. The presentation of a hepatitis C viral peptide by distinct major histocompatibility complex class I allotypes from two chimpanzee species. J Exp Med 1996; 183: 663–8.

    PubMed  CAS  Google Scholar 

  333. Yasutomi Y, Koenig S, Woods RM et al. A vaccine-elicited, single viral epitopespecific cytotoxic T lymphocyte response does not protect against intravenous, cell-free simian immunodeficiency virus challenge. J Virol 1995; 69: 2279–84.

    PubMed  CAS  Google Scholar 

  334. Pauly T, Elbers K, König M et al. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J Gen Virol 1995; 76: 3039–49.

    PubMed  CAS  Google Scholar 

  335. Fahnestock ML, Johnson JL, Feldman RM et al. The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity 1995; 3: 583–90.

    PubMed  CAS  Google Scholar 

  336. Hammer J, Takacs B, Sinigaglia F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med 1992; 176: 1007–13.

    PubMed  CAS  Google Scholar 

  337. Verreck FA, van de Poel A, Drillbout JW et al. Natural peptides isolated from Gly86/Va186-containing variants of HLADR1, -DRI1, -DR13, and -DR52. Immunogenetics 1996; 43: 392–7.

    PubMed  CAS  Google Scholar 

  338. Chicz RM, Urban RG, Lane WS et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992; 358: 764–8.

    PubMed  CAS  Google Scholar 

  339. Kropshofer H, Max H, Muller CA et al. Self-peptide released from class II HLA-DR1 exhibits a hydrophobic two-residue contact motif. J Exp Med 1992; 175: 1799–803.

    PubMed  CAS  Google Scholar 

  340. Reizis B, Mor F, Eisenstein M et al. The peptide binding specificity of the MHC class II I-A molecule of the Lewis rat, RT1B’. Int Immunol 1996; 8: 1825–32.

    PubMed  CAS  Google Scholar 

  341. Verreck FAW, Vermeulen C, v.d.Poel A et al. The generation of SDS-stable HLA DR dimers is independent of efficient peptide binding. Int Immunol 1996; 8: 397–404.

    PubMed  CAS  Google Scholar 

  342. Colovai AI, Liu Z, Harris PE et al. Allopeptide-specific T cell reactivity altered by peptide analogs. J Immunol 1997; 158: 48–54.

    PubMed  CAS  Google Scholar 

  343. Adams E, Basten A, Rodda S et al. Human T-cell clones to the 70-Kilodalton heat shock protein of Mycobacterium leprae define mycobacterium-specific epitopes rather than shared epitopes. Infection and Immunity 1997; 65: 1061–70.

    PubMed  CAS  Google Scholar 

  344. Muller CP, Ammerlaan W, Fleckenstein B et al. Activation of T cells by the ragged tail of MHC class II-presented peptides of the measles virus fusion protein. Int Immunol 1996; 8: 445–56.

    PubMed  CAS  Google Scholar 

  345. Geluk A, van Meijgaarden KE, Southwood S et al. HLA-DR3 molecules can bind peptides carrying two alternative specific submotifs. J Immunol 1994; 152: 5742–8.

    Google Scholar 

  346. Geluk A, van Meijgaarden KE, Janson AA et al. Functional analysis of DR17(DR3)restricted mycobacterial T cell epitopes reveals DR17-binding motif and enables the design of allele-specific competitor peptides. J Immunol 1992; 149: 2864–71.

    Google Scholar 

  347. Riberdy JM, Newcomb JR, Surman MJ et al. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 1992; 360: 474–7.

    PubMed  CAS  Google Scholar 

  348. Sette A, Ceman S, Kubo RT et al. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 1992; 258: 1801–4.

    PubMed  CAS  Google Scholar 

  349. Hawes GE, Struyk L, Godthelp BC et al. Limited restriction in the TCR-alpha beta V region usage of antigen-specific clones. Recognition of myelin basic protein (amino acids 84–102) and Mycobacterium bovis 65-kDa heat shock protein (amino acids 3–13) by T cell clones established from peripheral blood mononuclear cells of monozygotic twins and HLA-identical individuals. J Immunol 1995; 154: 555–66.

    PubMed  CAS  Google Scholar 

  350. Friede T, Gnau V, Jung G et al. Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochimica et Biophysica Acta 1996; 1316: 85–101.

    PubMed  Google Scholar 

  351. Sette A, Sidney J, Oseroff C et al. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J Immunol 1993; 151: 3163–70.

    PubMed  CAS  Google Scholar 

  352. Hammer J, Valsasnini P, Tolba K et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 1993; 74: 197–203.

    PubMed  CAS  Google Scholar 

  353. Hill CM, Liu A, Marshall KW et al. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J Immunol 1994; 152: 2890–8.

    PubMed  CAS  Google Scholar 

  354. Hammer J, Gallazzi F, Bono E et al. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med 1995; 181: 1847–55.

    PubMed  CAS  Google Scholar 

  355. Kirschmann DA, Duffin KL, Smith CE et al. Naturally processed peptides from rheumatoid arthritis associated and nonassociated HLA-DR alleles. J Immunol 1995; 155: 5655–62.

    PubMed  CAS  Google Scholar 

  356. Adibzadeh M, Friccius H, Bornhak S et al. Role of three quantitatively dominant endogenous peptides from HLADRB1*0401 molecules in class II specific allreactivity. Transplant Immunology 1994; 2: 293–9.

    PubMed  CAS  Google Scholar 

  357. McNicholl JM, Whitworth WC, Oftung F et al. Structural requirements of peptide and MHC for DR(alpha, beta 1*0401)-restricted T cell antigen recognition. J Immunol 1995; 155: 1951–63.

    PubMed  CAS  Google Scholar 

  358. Gaston JSH, Deane KHO, Jecock RM et al. Identification of 2 Chlamydia trachomatis antigens recognized by synovial fluid T cells from patients with Chlamydia induced reactive arthritis. J Rheumatol 1996; 23: 130–6.

    PubMed  CAS  Google Scholar 

  359. Fugger L, Rothbard JB, Sonderstrup McDevitt G. Specificity of an HLADRBI*0401-restricted T cell response to type II collagen. Eur J Immunol 1996; 26: 928–33.

    PubMed  CAS  Google Scholar 

  360. Topalian SL, Gonzales MI, Parkhurst M et al. Melanoma-specific CD4+T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med 1996; 183: 1965–71.

    PubMed  CAS  Google Scholar 

  361. Wicker LS, Chen S, Nepom GT et al. Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the Type 1 diabetes-associated human MHC Class II allele, DRB1*0401. J Clin Invest 1996; 98: 2597–603.

    PubMed  CAS  Google Scholar 

  362. ten Bosch GJA, Joosten AM, Kessler JH et al. Recognition of BCR-ABL Positive leukemic blasts by human CD4* T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 1996; 88: 3522–7.

    PubMed  CAS  Google Scholar 

  363. Hayden JB, McCormack AL, Yates III JR et al. Analysis of naturally processed peptides eluted from HLA DRB1*0402 and *0404. J Neurosci Res 1996; 45: 795–802.

    Google Scholar 

  364. Wucherpfennig KW, Yu B, Bhol K et al. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci U S A 1995; 92: 11935–9.

    PubMed  CAS  Google Scholar 

  365. Ou D, Mitchell LA, Domeier ME et al. Characterization of the HLA-restrictive elements of a rubella virus-specific cytotoxic T cell clone: influence of HLADR4I chain residue 74 polymorphism on antigenic peptide-T cell interaction. Int Immunol 1996; 8: 1577–86.

    PubMed  CAS  Google Scholar 

  366. Matsushita S, Takahashi K, Motoki M et al. Allele specificity of structural requirement for peptides bound to HLADRB1*0405 and -DRBI*0406 complexes: implication for the HLA-associated susceptibility to methimazole-induced insulin autoimmune syndrome. J Exp Med 1994; 180: 873–83.

    PubMed  CAS  Google Scholar 

  367. Kinouchi R, Kobayasi H, Sato K et al. Peptide motifs of HLA-DR4/DR53 (DRBI*0405/DRB4*0101) molecules. Immunogenetics 1994; 40: 376–8.

    PubMed  CAS  Google Scholar 

  368. Okano M, Nagano T, Nakada M et al. Epitope analysis of HLA-DR-restricted helper T-cell responses to DER P II, a major allergen molecule of dermatophagoides pteronyssinus. Allergy 1996; 51: 29–35.

    PubMed  CAS  Google Scholar 

  369. Davenport MP, Godkin A, Friede T et al. A distinctive peptide binding motif for HLA-DRB1*0407, an HLA-DR4 subtype not associated with rheumatoid arthritis. Immunogenetics 1997; 45: 229–32.

    PubMed  CAS  Google Scholar 

  370. Gautier N, Chavant E, Prieur E et al. Characterization of an epitope of the human cytomegalovirus protein IE1 recognized by a CD4+ T cell clone. Eur J Immunol 1996; 26: 1110–7.

    PubMed  CAS  Google Scholar 

  371. Fujisao S, Matsushita S, Nishi T et al. Identification of HLA-DR9 (DRBI*0901) binding peptide motifs using a phage fUSE5 random peptide library. Human Immunology 1996; 45: 131–6.

    PubMed  CAS  Google Scholar 

  372. Futaki G, Kobayashi H, Sato K et al. Naturally processed HLA-DR9/DR53 (DRB1*0901/DRB4*0101)-bound peptides. Immunogenetics 1995; 42: 299–301.

    PubMed  CAS  Google Scholar 

  373. Newcomb JR, Cresswell P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha beta dimers. J Immunol 1993; 150: 499–507.

    PubMed  CAS  Google Scholar 

  374. Tsitoura DC, Hotter W, Cerwenka A et al. Induction of anergy in human T helper 0 cells by stimulation with altered T cell antigen receptor ligands. J Immunol 1996; 156: 2801–8.

    PubMed  CAS  Google Scholar 

  375. Davenport MP, Quinn CL, Chicz RM et al. Naturally processed peptides from two disease-resistance-associated HLA-DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DR beta chain. Proc Natl Acad Sci U S A 1995; 92: 6567–71.

    PubMed  CAS  Google Scholar 

  376. Boitel B, Blank U, Mege D et al. Strong similarities in antigen fine specificity among DRB1* 1302-restricted tetanus toxin tt830–843-specific TCRs in spite of highly heterogeneous CDR3. J Immunol 1995; 154: 3245–55.

    PubMed  CAS  Google Scholar 

  377. Diepolder HM, Jung M, Wierenga E et al. Anergic TH1 clones specific for hepatitis B virus (HBV) core peptides are inhibitory to other HBV core-specific CD4* T cells in vitro. J Tirol 1996; 70: 7540–8.

    CAS  Google Scholar 

  378. Matsushita S, Yokomizo H, Kohsaka H et al. Diversity of a human CD4+ T cell repertoire recognizing one TCR ligand. Immunoly Letters 1996; 51: 191–4.

    CAS  Google Scholar 

  379. Vogt AB, Kropshofer H, Kalbacher H et al. Ligand motifs of HLA-DRB5*0101 and DRB 1 * 1501 molecules delineated from self-peptides. J Immunol 1994; 153: 1665–73.

    PubMed  CAS  Google Scholar 

  380. Wucherpfennig KW, Sette A, Southwood S et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 1994; 179: 279–90.

    PubMed  CAS  Google Scholar 

  381. Kurane I, Okamoto Y, Dai LC et al. Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4+ CD8- cytotoxic T lymphocyte clones. J Gen Virol 1995; 76: 2243–9.

    PubMed  CAS  Google Scholar 

  382. Markovic Plese S, Fukaura H, Zhang J et al. T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 1995; 155: 982–92.

    Google Scholar 

  383. White CA, Cross SM, Kurilla MG et al. Recruitment during infectious mononucleosis of CD3*CD4+CD8+ virus-specific cytotoxic T cells which recognise Epstein-Barr virus lytic antigen BHRF1. Virology 1996; 219: 489–92.

    PubMed  CAS  Google Scholar 

  384. Ikagawa S, Matsushita S, Chen YZ et al. Single amino acid substitutions on a Japanese cedar pollen allergen (Cry j 1)-derived peptide induced alterations in human T cell responses and T cell receptor antagonism. J Allergy Clin Immunol 1996; 97: 53–64.

    PubMed  CAS  Google Scholar 

  385. Blaher B, Suphioglu C, Knox RB et al. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen. J Allergy Clin Immunol 1996; 98: 124–32.

    PubMed  CAS  Google Scholar 

  386. Kobayashi H, Kokubo T, Abe Y et al. Analysis of anchor residues in a naturally processed HLA-DR53 ligand. Immunogenetics 1996; 44: 366–71.

    PubMed  CAS  Google Scholar 

  387. O’Sullivan D, Arrhenius T, Sidney J et al. On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 1991; 147: 2663–9.

    PubMed  Google Scholar 

  388. Anderson DC, van Schooten WC, Barry ME et al. A Mycobacterium leprae-specific human T cell epitope cross-reactive with an HLA-DR2 peptide. Science 1988; 242: 259–61.

    Google Scholar 

  389. Martin R, Howell MD, Jaraquemada D et al. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 1991; 173: 19–24.

    PubMed  CAS  Google Scholar 

  390. Kwok WW, Domeier ME, Raymond FC et al. Allele-specific motifs characterize HLA-DQ interactions with a diabetes-associated peptide derived from glutamic acid decarboxylase. J Immunol 1996; 156: 2171–7.

    PubMed  CAS  Google Scholar 

  391. Sidney J, Oseroff C, del Guercio MF et al. Definition of a DQ3.1-specific binding motif. J Immunol 1994; 152: 4516–25.

    PubMed  CAS  Google Scholar 

  392. Vartdal F, Johannsen BH, Friede T et al. The peptide binding motif for the disease associated HLA-DQ (al*0501, (31*0201) molecule. European Journal of Immunology 1996; 26: 2764–72.

    PubMed  CAS  Google Scholar 

  393. Rötzschke O, Falk K. Origin, structure and motifs of naturally processed MHC class II ligands. Curr Opin Immunol 1994; 6: 45–51.

    PubMed  Google Scholar 

  394. Schild H, Grüneberg U, Pougialis G et al. Natural ligand motifs of H-2E molecules are allele specific and illustrate homology to HLA-DR molecules. Int Immunol 1995; 7: 1957–65.

    PubMed  CAS  Google Scholar 

  395. Reay PA, Kantor RM, Davis MM. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103). J Immunol 1994; 152: 3946–57.

    PubMed  CAS  Google Scholar 

  396. Marrack P, Ignatowicz L, Kappler JW et al. Comparison of peptides bound to spleen and thymus class II. J Exp Med 1993; 178: 2173–83.

    PubMed  CAS  Google Scholar 

  397. Leighton J, Sette A, Sidney J et al. Comparison of structural requirements for interaction of the same peptide with IEk and I-Ed molecules in the activation of MHC class II-restricted T cells. J Immunol 1991; 147: 198–204.

    PubMed  CAS  Google Scholar 

  398. Altuvia Y, Berzofsky JA, Rosenfeld R et al. Sequence features that correlate with MHC restriction [published erratum appears in Mol Immunol 1994; 31:7031. Mol Immunol 1994; 31: 1–19.

    PubMed  CAS  Google Scholar 

  399. Spouge JL, Guy HR, Cornette JL et al. Strong conformational propensities enhance T cell antigenicity. J Immunol 1987; 138: 204–12.

    PubMed  CAS  Google Scholar 

  400. Adorini L, Appella E, Doria G et al. Mechanisms influencing the immuno-dominance of T cell determinants. J Exp Med 1988; 168: 2091–104.

    PubMed  CAS  Google Scholar 

  401. Sette A, Buus S, Appella E et al. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A 1989; 86: 3296–300.

    PubMed  CAS  Google Scholar 

  402. Bogen B, Snodgrass R, Briand JP et al Synthetic peptides and beta-chain gene rearrangements reveal a diversified T cell repertoire for a lambda light chain third hypervariable region. Eur J Immunol 1986; 16: 1379–84.

    PubMed  CAS  Google Scholar 

  403. Adorini L, Sette A, Buus S et al. Interaction of an immunodominant epitope with Ia molecules in T-cell activation. Proc Natl Acad Sci U S A 1988; 85: 13. 5181–5.

    PubMed  CAS  Google Scholar 

  404. Guery JC, Sette A, Appella E et al. Constitutive presentation of dominant epitopes from endogenous naturally processed self-beta 2-microglobulin to class II-restricted T cells leads to self-toler- ance. J Immunol 1995; 154: 545–54.

    PubMed  CAS  Google Scholar 

  405. Fahrer AM, Geysen HM, White DO et al. Analysis of the requirements for class II-restricted T cell recognition of a single determinant reveals considerable diversity in the T cell response and degeneracy of peptide binding to I-Ed. J Immunol 1995; 155: 2849–57.

    Google Scholar 

  406. Banos DM, Lopez S, Arias CF et al. Iden- tification of a T-helper cell epitope on the rotavirus VP6 protein. J Virol 1996; 71: 419–26

    Google Scholar 

  407. Rudensky AY, Preston Hurlburt P, Hong SC et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991; 353: 622–7

    PubMed  CAS  Google Scholar 

  408. Rudensky AY, Preston Hurlburt P, Hong SC et al. Sequence analysis of peptides bound to MHC class II molecules. Na- 417 ture 1991; 353: 622–7.

    CAS  Google Scholar 

  409. Samson MF, Smilek DE. Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long- Immunol 1995; 155: 2737–46

    CAS  Google Scholar 

  410. Rudensky AY, Preston Hurlburt P, al Ramadi BK et al. Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. Na- 419 Lure 1992; 359: 429–31.

    CAS  Google Scholar 

  411. Brett SJ, Tite JP. Both H-2- and non-H2-linked genes influence influenza nucle-oprotein epitope recognition by CD4* T cells. Immunology 1996; 87: 42–8.

    PubMed  CAS  Google Scholar 

  412. Harris DP, Vordermeier HM, Singh M et al. Cross-recognition by T cells of an epitope shared by two unrelated mycobacterial antigens. Eur J Immunol 1995; 25: 3173–9.

    PubMed  CAS  Google Scholar 

  413. Mendel I, Kerlero de Rosbo N, Ben-Nun A. Delineation of the minimal encephalitogenic epitope within the immunodominant region of myelin oligodendrocyte glycoprotein: diverse V(3 gene usage by T cells recognizing the core epitope encephalitogenic for T cell receptor V(3’ and T cell receptor VP’ H-2h mice. Eur J Immunol 1996; 26: 2470–9.

    CAS  Google Scholar 

  414. Kristensen NM, Hoyne GF, Hayball JD et al. Induction of T cell responses to the invariant chain derived peptide CLIP in mice immunized with the group 1 allergen of house dust mite. Int Immunol 1996; 8: 1091–8.

    PubMed  CAS  Google Scholar 

  415. Cong Y, Bowdon HR, Elson CO. Identification of an immunodominant T cell epitope on cholera toxin. Eur J Immunol 1996; 26: 2587–95.

    PubMed  CAS  Google Scholar 

  416. Noll A, Autenrieth IB. Yersinia-hsp60reactive T cells are efficiently stimulated by peptides of 12 and 13 amino acid residues in a MHC class II (I-Al’)-restricted manner. Clin Exp Immunol 1996; 105: 231–7.

    PubMed  CAS  Google Scholar 

  417. Yanagisawa S, Koike M, Kariyone A et al. Mapping of Mß11* helper T cell epitopes on mycobacterial antigen in mouse primed with Mycobacterium tuberculosis. Int Immunol 1997; 9:227–37

    PubMed  CAS  Google Scholar 

  418. Cole GA, Tao T, Hogg TL et al. Binding motifs predict major histocompatibility class II-restricted epitopes in the Sendai virus M protein. J Virol 1995; 69: 8057–60.

    PubMed  CAS  Google Scholar 

  419. Hunt DF, Michel H, Dickinson TA et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992; 256: 1817–20.

    PubMed  CAS  Google Scholar 

  420. Nelson CA, Viner NJ, Young SP et al. A negatively charged anchor residue promotes high affinity binding to the MHC Class II molecule I-Ak. J Immunol 1996; 157: 755–62.

    PubMed  CAS  Google Scholar 

  421. Nelson CA, Roof RW, McCourt DW et al. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc Natl Acad Sci U S A 1992; 89: 7380–3.

    PubMed  CAS  Google Scholar 

  422. Reizis B, Eisenstein M, Bockova J et al. Molecular characterization of the diabetes-associated mouse MHC class II protein, I-Ag7. Int Immunol 1997; 9: 43–51.

    PubMed  CAS  Google Scholar 

  423. Harrison LC, Honeyman MC, Trembleau S et al. A peptide binding motif for IAg7, the class II MHC molecule of NOD and BIOZZI ABH mice. [In Press] J Exp Med 1997.

    Google Scholar 

  424. Hurtenbach U, Lier E, Adorini L et al. Prevention of autoimmune diabetes in nonobese diabetic mice by treatment with a class II major histocompatibility complex-blocking peptide. J Exp Med 1993; 177: 1499–594.

    PubMed  CAS  Google Scholar 

  425. Deng H, Apple M, Clare-Salzler M et al. Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease. J Exp Med 1993; 178: 1675–80.

    PubMed  CAS  Google Scholar 

  426. Chen S, Whiteley PJ, Freed DC et al. Responses of NOD congenic mice to a glutamic acid decarboxylase-derived peptide. J Autoimmunity 1994; 7: 635–41.

    CAS  Google Scholar 

  427. Kaufman DL, Clare Salzler M, Tian J et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366: 69–72.

    PubMed  CAS  Google Scholar 

  428. Smilek DE, Lock CB, McDevitt HO. Antigen recognition and peptide-mediated immunotherapy in autoimmune disease. Immunol Rev 1990; 118: 37–71.

    PubMed  CAS  Google Scholar 

  429. Amor S, O’Neill JK, Morris MM et al. Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. J Immunol 1996; 156: 3000–8.

    PubMed  CAS  Google Scholar 

  430. Carrasco-Marin E, Shimizu J, Kanagawa O et al. The class II MHC I-Ag7 molecules from nonobese diabetic mice are poor peptide binders. J Immunol 1996; 156: 450–8.

    PubMed  CAS  Google Scholar 

  431. Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc Natl Acad Sci U S A 1996; 93: 956–60.

    PubMed  CAS  Google Scholar 

  432. Ridgway WM, Fasso M, Lanctot A et al. Breaking self-tolerance in nonobese diabetic mice. J Exp Med 1996; 183: 1657–62.

    PubMed  CAS  Google Scholar 

  433. Bernard CCA, Johns TG, Slavin A et al. Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 1997; 75: 77–88.

    PubMed  CAS  Google Scholar 

  434. Wauben MHM, van der Kraan M, Grosfeld-Stulemeyer MC et al. Definition of an extended MHC class II-peptide binding motif for the autoimmune disease-associated Lewis rat RT1.BL molecule. Int Immunol 1997; 9: 281–90.

    PubMed  CAS  Google Scholar 

  435. Mannie MD, Paterson PY, U’Prichard DC et al. The N- and C-terminal boundaries of myelin basic protein determinants required for encephalitogenic and proliferative responses of Lewis rat T cells. J Neuroimmunol 1990; 26: 201–11.

    PubMed  CAS  Google Scholar 

  436. Kojima K, Berger T, Lassmann H et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med 1994; 180: 817–29.

    PubMed  CAS  Google Scholar 

  437. Anderton SM, van der Zee R, Noordzij A et al. Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after adjuvant arthritis-inducing or protective immunization protocols. J Immunol 1994; 152: 3656–64.

    PubMed  CAS  Google Scholar 

  438. Wegmann KW, Zhao W, Griffin AC et al. Identification of myocarditogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. The utility of a class II binding motif in selecting self-reactive peptides. J Immunol 1994; 153: 892–900.

    PubMed  CAS  Google Scholar 

  439. Broeren CP, Lucassen MA, van Stipdonk MJ et al. CDR1 T-cell receptor beta-chain peptide induces major histocom-patibility complex class II-restricted T-T cell interactions. Proc Natl Acad Sci U S A 1994; 91: 5997–6001.

    Google Scholar 

  440. Stevanovic S, Rammensee HG. Identification of T-cell epitopes using allele-specific ligand motifs. Behring Inst Mitt 1994; 7–13.

    Google Scholar 

  441. DeLisi C, Berzofsky JA. T-cell antigenic sites tend to be amphipathic structures. Proc Natl Acad Sci USA 1985; 82: 7048–52.

    PubMed  CAS  Google Scholar 

  442. Rothbard JB, Taylor WR. A sequence pattern common to T cell epitopes. EMBO J 1988; 7: 93–100.

    PubMed  CAS  Google Scholar 

  443. Claverie JM, Kourilsky P, LangladeDemoyen P et al. T-immunogenic peptides are constituted of rare sequence patterns. Use in the identification of T epitopes in the human immunodeficiency virus gag protein. Eur J Immunol 1988; 18: 1547–653.

    PubMed  CAS  Google Scholar 

  444. Garcia KC, Degano M, Stanfield RL et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCRMHC complex. Science 1996; 274: 209–19.

    PubMed  CAS  Google Scholar 

  445. Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12: 387–95.

    PubMed  CAS  Google Scholar 

  446. D’Amaro J, Houbiers JGA, Drijfhout JW et al. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs. Hum Immunol 1995; 43: 13–8.

    PubMed  Google Scholar 

  447. Davenport MP, Ho Shon IAP, Hill AVS. An empirical method for the prediction of T-cell epitopes. Immunogenetics 1995; 42: 392–7.

    PubMed  CAS  Google Scholar 

  448. Hammer J, Bono E, Gallazzi F et al. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med 1994; 180: 2353–8.

    PubMed  CAS  Google Scholar 

  449. Lehner PJ, Cresswell P. Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol 1996; 8: 59–67.

    PubMed  CAS  Google Scholar 

  450. Busch R, Mellins ED. Developing and shedding inhibitions: how MHC class II molecules reach maturity. Curr Opin Immunol 1996; 8: 51–8.

    PubMed  CAS  Google Scholar 

  451. Pieters J. MHC class II restricted anti gen presentation. Curr Opin Immunol 1997; 9: 89–96.

    Google Scholar 

  452. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996; 65: 801–47.

    PubMed  CAS  Google Scholar 

  453. Goldberg AL. Functions of the proteasome: the lysis at the end of the tunnel. Science 1995; 268: 522–3.

    PubMed  CAS  Google Scholar 

  454. Lowe J, Stock D, Jap B et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995; 268: 533–9.

    PubMed  CAS  Google Scholar 

  455. Seemüller E, Lupas A, Stock D et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 1995; 268: 579–82.

    PubMed  Google Scholar 

  456. Nandi D, Jiang H, Monaco JJ. Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol 1996; 156: 2361–4.

    PubMed  CAS  Google Scholar 

  457. Tanaka K. Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol 1994; 56: 571–5.

    PubMed  CAS  Google Scholar 

  458. Kuckelkorn U, Frentzel S, Kraft R et al. Incorporation of major histocompatibility complex-encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma. Eur J Immunol 1995; 25: 2605–11.

    PubMed  CAS  Google Scholar 

  459. Sibille C, Gould KG, Willard Gallo K et al. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol 1995; 5: 923–30.

    PubMed  CAS  Google Scholar 

  460. Groettrup M, Ruppert T, Kuehn L et al. The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. J Biol Chem 1995; 270: 23808–15.

    PubMed  CAS  Google Scholar 

  461. Van Kaer L, Ashton Rickardt PG, Eichelberger M et al. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1994; 1: 533–41.

    PubMed  Google Scholar 

  462. Gaczynska M, Rock KL, Spies T et al. Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc Nati Acad Sci U S A 1994; 91: 9213–7.

    CAS  Google Scholar 

  463. Fehling HJ, Swat W, Laplace C et al. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 1994; 265: 1234–7.

    PubMed  CAS  Google Scholar 

  464. Zhou X, Momburg F, Liu T et al. Presentation of viral antigens restricted by H-2Kb, Db or Kd in proteasome subunit LMP2- and LMP7-deficient cells. Eur J Immunol 1994; 24: 1863–8.

    PubMed  CAS  Google Scholar 

  465. Driscoll J, Brown MG, Finley D et al. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 1993; 365: 262–4.

    PubMed  CAS  Google Scholar 

  466. Arnold D, Driscoll J, Androlewicz M et al. Proteasome subunits encoded in the mhc are not generally required for the processing of peptides bound by MHC class-I molecules. Nature 1992; 360: 171–4.

    PubMed  CAS  Google Scholar 

  467. Orlowski M, Wilk S. A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem Biophys Res Commun 1981; 101: 814–22.

    PubMed  CAS  Google Scholar 

  468. Wenzel T, Eckerskorn C, Lottspeich F et al. Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett 1994; 349: 205–9.

    PubMed  CAS  Google Scholar 

  469. Dick TP, Ruppert T, Groettrup M et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 1996; 86: 253–62.

    PubMed  CAS  Google Scholar 

  470. Gray CW, Slaughter CA, DeMartino GN. PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol 1994; 236: 7–15.

    PubMed  CAS  Google Scholar 

  471. Ahn JY, Tanahashi N, Akiyama K et al. Primary structures of two homologous subunits of PA28, a gamma-interferoninducible protein activator of the 20S proteasome. FEBS Lett 1995; 366: 37–42.

    PubMed  CAS  Google Scholar 

  472. Realini C, Dubiel W, Pratt G et al. Molecular cloning and expression of a gamma-interferon-inducible activator of the multicatalytic protease. J Biol Chem 1994; 269: 20727–32.

    PubMed  CAS  Google Scholar 

  473. Hoffman L, Rechsteiner M. Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits. J Biol Chem 1994; 269: 16890–5.

    PubMed  CAS  Google Scholar 

  474. Dubiel W, Pratt G, Ferrell K et al. Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 1992; 267: 22369–77.

    PubMed  CAS  Google Scholar 

  475. Groettrup M, Soza A, Eggers M et al. A role for the proteasome regulator PA28 alpha in antigen presentation. Nature 1996; 381: 166–8.

    PubMed  CAS  Google Scholar 

  476. Momburg F, Neefjes JJ, Hämmerling GJ. Peptide selection by MHC-encoded TAP transporters. Curr Opin Immunol 1994; 6: 32–7.

    PubMed  CAS  Google Scholar 

  477. Howard JC. Supply and transport of peptides presented by class I MHC molecules. Curr Opin Immunol 1995; 7: 69–76.

    PubMed  CAS  Google Scholar 

  478. Srivastava PK, Udono H, Blachere NE et al. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994; 39: 93–8.

    PubMed  CAS  Google Scholar 

  479. van Endert PM, Riganelli D, Greco G et al. The peptide-binding motif for the human transporter associated with antigen processing. J Exp Med 1995; 182: 1883–95.

    Google Scholar 

  480. Neefjes J, Gottfried E, Roelse J et al. Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur J Immunol 1995; 25: 1133–6.

    PubMed  CAS  Google Scholar 

  481. Momburg F, Roelse J, Howard JC et al. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 1994; 367: 648–51.

    PubMed  CAS  Google Scholar 

  482. Schumacher TN, Kantesaria DV, Heemels MT et al. Peptide length and sequence specificity of the mouse TAP1/ TAP2 translocator. J Exp Med 1994; 179: 533–40.

    PubMed  CAS  Google Scholar 

  483. Koopmann JO, Post M, Neefjes JJ et al. Translocation of long peptides by transporters associated with antigen processing (TAP). Eur J Immunol 1996; 26: 1720–8.

    PubMed  CAS  Google Scholar 

  484. Powis SJ, Young LL, Joly E et al. The rat cim effect: TAP allele-dependent changes in a class I MHC anchor motif and evidence against C-terminal trimming of peptides in the ER. Immunity 1996; 4: 159–65.

    PubMed  CAS  Google Scholar 

  485. Obst R, Armandola EA, Nijenhuis M et al. TAP polymorphism does not influence transport of peptide variants in mice and humans. Eur J Immunol 1995; 25: 2170–6.

    PubMed  CAS  Google Scholar 

  486. Cresswell P, Androlewicz MJ, Ortmann B. Assembly and transport of class I MHC-peptide complexes. Ciba Found Symp 1994; 187: 150–69.

    PubMed  CAS  Google Scholar 

  487. Suh WK, Mitchell EK, Yang Y et al. MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide-regulated interaction with TAP via their extracellular domains. J Exp Med 1996; 184: 337–48.

    PubMed  CAS  Google Scholar 

  488. Williams DB, Watts TH. Molecular chaperones in antigen presentation. Curr Opin Immunol 1995; 7: 77–84.

    PubMed  CAS  Google Scholar 

  489. Rajagopalan S, Brenner MB. Calnexin retains unassembled major histocompatibility complex class I free heavy chains in the endoplasmic reticulum. J Exp Med 1994; 180: 407–12.

    PubMed  CAS  Google Scholar 

  490. Jackson MR, Cohen Doyle MF, Peterson PA et al. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 1994; 263: 384–7.

    PubMed  CAS  Google Scholar 

  491. Sadasivan B, Lehner PJ, Ortmann B et al. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 1996; 5: 103–14.

    PubMed  CAS  Google Scholar 

  492. Arnold D, Faath S, Rammensee HG et al. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 1995; 182: 885–9.

    PubMed  CAS  Google Scholar 

  493. Nieland TJ, Tan MC, Monne van Muijen M et al. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Nati Acad Sci U S A 1996; 93: 6135–9.

    CAS  Google Scholar 

  494. Lammert E, Stevanovic S, Brunner J et al. Protein disulfide isomerase is the dominant acceptor for peptides translocation into the endoplasmic reticulum. [In Press] Eur J Immunol.

    Google Scholar 

  495. Falk K, Rötzschke O, Rammensee HG. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 1990; 348: 248–51.

    PubMed  CAS  Google Scholar 

  496. Wiertz EJ, Jones TR, Sun L et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996; 84: 769–79.

    PubMed  CAS  Google Scholar 

  497. Roelse J, Gromme M, Momburg F et al. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J Exp Med 1994; 180: 1591–7.

    PubMed  CAS  Google Scholar 

  498. Wei ML, Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 1992; 356: 443–6.

    PubMed  CAS  Google Scholar 

  499. Rötzschke O, Falk K, Faath S et al. On the nature of peptides involved in T cell alloreactivity. J Exp Med 1991; 174: 1059–71.

    PubMed  Google Scholar 

  500. Hosken NA, Bevan MJ. An endogenous antigenic peptide bypasses the class I antigen presentation defect in RMA-S. J Exp Med 1992; 175: 719–29.

    PubMed  CAS  Google Scholar 

  501. Fruh K, Ahn K, Peterson PA. Inhibition of MHC class I antigen presentation by viral proteins. J Mol Med 1997; 75: 18–27.

    PubMed  CAS  Google Scholar 

  502. Levitskaya J, Coram M, Levitsky V et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995; 375: 685–8.

    PubMed  CAS  Google Scholar 

  503. Rotem Yehudar R, Groettrup M, Soza A et al. LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. J Exp Med 1996; 183: 499–514.

    CAS  Google Scholar 

  504. Tomazin R, Hill AB, Jugovic P et al. Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 1996; 15: 3256–66.

    PubMed  CAS  Google Scholar 

  505. Korner H, Burgert HG. Down-regulation of HLA antigens by the adenovirus type 2 E3/19K protein in a T-lymphoma cell line. J Virol 1994; 68: 1442–8.

    PubMed  CAS  Google Scholar 

  506. Reimann J, Bohm W, Schirmbeck R. Alternative processing pathways for MHC class I-restricted epitope presentation to CD8+ cytotoxic T lymphocytes. Biol Chem Hoppe Seyler 1994; 375: 731–6.

    PubMed  CAS  Google Scholar 

  507. Harding CV, Song R, Griffin J et al. Processing of bacterial antigens for presentation to class I and II MHC-restricted T lymphocytes. Infect Agents Dis 1995; 4: 1–12.

    PubMed  CAS  Google Scholar 

  508. Pfeifer JD, Wick MJ, Roberts RL et al. Phagocytic processing of bacterial anti-gens for class I MHC presentation to T cells. Nature 1993; 361: 359–62.

    PubMed  CAS  Google Scholar 

  509. Schirmbeck R, Bohm W, Melber K et al. Processing of exogenous heat-aggregated (denatured) and particulate (native) hepatitis B surface antigen for class I-restricted epitope presentation. J Immunol 1995; 155: 4676–84.

    PubMed  CAS  Google Scholar 

  510. Liu T, Zhou X, Orvell C et al. Heat-inactivated Sendai virus can enter multiple MHC class I processing pathways and generate cytotoxic T lymphocyte responses in vivo. J Immunol 1995; 154: 3147–55.

    PubMed  CAS  Google Scholar 

  511. Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995; 267: 243–6.

    PubMed  CAS  Google Scholar 

  512. Zhou X, Liu T, Franksson L et al. Characterization of TAP-independent and brefeldin A-resistant presentation of Sendai virus antigen to CD8+ cytotoxic T lymphocytes. Scand J Immunol 1995; 42: 66–75.

    PubMed  CAS  Google Scholar 

  513. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 1994; 12: 259–93.

    PubMed  CAS  Google Scholar 

  514. Cresswell P. Invariant chain structure and MHC class II function. Cell 1996; 84: 505–7.

    PubMed  CAS  Google Scholar 

  515. Pieters J, Bakke O, Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci 1993; 106: 831–46.

    PubMed  CAS  Google Scholar 

  516. Tulp A, Verwoerd D, Dobberstein B et al. Isolation and characterization of the intracellular MHC class II compartment. Nature 1994; 369: 120–6.

    PubMed  CAS  Google Scholar 

  517. Pieters J, Horstmann H, Bakke O et al. Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. J Cell Biol 1991; 115: 1213–23.

    PubMed  CAS  Google Scholar 

  518. Harding CV. Intracellular organelles involved in antigen processing and the binding of peptides to class II MHC molecules. Semin Immunol 1995; 7: 355–60.

    PubMed  CAS  Google Scholar 

  519. Copier J, Kleijmeer MJ, Ponnambalam S et al. Targeting signal and subcellular compartments involved in the intracellular trafficking of HLA-DMB. J Immunol 1996; 157: 1017–27.

    PubMed  CAS  Google Scholar 

  520. Robbins NF, Hammond C, Denzin LK et al. Trafficking of major histocompatibility complex class II molecules through intracellular compartments containing HLA-DM. Hum Immunol 1996; 45: 13–23.

    PubMed  CAS  Google Scholar 

  521. Riese RI, Wolf PR, Bromme D et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 1996; 4: 357–66.

    PubMed  CAS  Google Scholar 

  522. Weber DA, Evavold BD, Jensen PE. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science 1996; 274: 618–20.

    PubMed  CAS  Google Scholar 

  523. Vogt AB, Kropshofer H, Moldenhauer G et al. Kinetic analysis of peptide loading onto HLA-DR molecules mediated by HLA-DM. Proc Natl Acad Sci U S A 1996; 93: 9724–9.

    PubMed  CAS  Google Scholar 

  524. Pierre P, Denzin LK, Hammond C et al. HLA-DM is localized to conventional and unconventional MHC class II-containing endocytic compartments. Immunity 1996; 4: 229–39.

    PubMed  CAS  Google Scholar 

  525. Sanderson F, Thomas C, Neefjes J et al. Association between HLA-DM and HLADR in vivo. Immunity 1996; 4: 87–96.

    PubMed  CAS  Google Scholar 

  526. Mellins E, Kempin S, Smith L et al. A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex. J Exp Med 1991; 174: 1607–15.

    PubMed  CAS  Google Scholar 

  527. Morris P, Shaman J, Attaya M et al. An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature 1994; 368: 551–4.

    PubMed  CAS  Google Scholar 

  528. Fling SP, Arp B, Pious D. HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature 1994; 368: 554–8.

    PubMed  CAS  Google Scholar 

  529. Mellins E, Smith L, Arp B et al. Defective processing and presentation of exogenous antigens in mutants with normal HLA class II genes. Nature 1990; 343: 71–4.

    PubMed  CAS  Google Scholar 

  530. Sloan VS, Cameron P, Porter G et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature 1995; 375: 802–6.

    PubMed  CAS  Google Scholar 

  531. Kropshofer H, Vogt AB, Moldenhauer G et al. Editing of the HLA DR peptide rep-ertoire by HLA DM. EMBO J 1996; 15: 6144–6154.

    PubMed  CAS  Google Scholar 

  532. Katz JF, Stebbins C, Appella E et al. Invariant chain and DM edit self peptide presentation by major histocompatibility complex (MHC) class II molecules. J Exp Med 1996; 184: 1747–1753.

    PubMed  CAS  Google Scholar 

  533. Vanham SM, Gruneberg U, Malcherek G et al. Human histocompatibility leukocyte antigen (HLA) DM edits peptides presented by HLA DR according to their ligand binding motifs. J Exp Med 1996; 184: 2019–2024.

    CAS  Google Scholar 

  534. Kropshofer H, Hämmerling GJ, Vogt AB. How HLA-DM edits the MHC class II peptide repertoire: survival of the fittest? Immunology Today 1997; 18: 77–82.

    PubMed  CAS  Google Scholar 

  535. Chiez RM, Urban RG, Gorga JC et al. Specificity and promiscuity among naturally processed peptides bound to HLADR alleles. J Exp Med 1993; 178: 27–47.

    Google Scholar 

  536. Malcherek G, Gnau V, Jung G et al. Supermotifs enable natural invariant chain-derived peptides to interact with many major histocompatibility complex-class II molecules. J Exp Med 1995; 181: 527–36.

    PubMed  CAS  Google Scholar 

  537. Riberdy JM, Newcomb JR, Surman MJ et al. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 1992; 360: 474–7.

    PubMed  CAS  Google Scholar 

  538. Ghosh P, Amaya M, Mellins E et al. The structure of an intermediate in class II MHC maturation: CLIP bound to HLADR3. Nature 1995; 378: 457–62.

    PubMed  CAS  Google Scholar 

  539. Pinet V, Malnati MS, Long EO. Two processing pathways for the MHC class II-restricted presentation of exogenous influenza virus antigen. J Immunol 1994; 152: 4852–60.

    PubMed  CAS  Google Scholar 

  540. Pinet V, Vergelli M, Martin R et al. Antigen presentation mediated by recycling of surface HLA-DR molecules. Nature 1995; 375: 603–6.

    PubMed  CAS  Google Scholar 

  541. Long EO. Antigen processing for presentation to CD4+ T cells. New Biol 1992; 4: 274–82.

    PubMed  CAS  Google Scholar 

  542. Malnati MS, Marti M, LaVaute T et al. Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature 1992; 357: 702–4.

    PubMed  CAS  Google Scholar 

  543. Mizuochi T, Yee ST, Kasai M et al. Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as well as for degradation of class II MHC invariant chain. Immunol Lett 1994; 43: 189–93.

    PubMed  CAS  Google Scholar 

  544. Matsunaga Y, Saibara T, Kido H et al. Participation of cathepsin B in processing of antigen presentation to MHC class II. FEBS Lett 1993; 324: 325–30.

    PubMed  CAS  Google Scholar 

  545. Rodriguez GM, Diment S. Role of cathepsin D in antigen presentation of ovalbumin. J Immunol 1992; 149: 2894–8.

    PubMed  CAS  Google Scholar 

  546. Hansen AS, Noren O, Sjostrom H et al. A mouse aminopeptidase N is a marker for antigen-presenting cells and appears to be co-expressed with major histocompatibility complex class II molecules. Eur J Immunol 1993; 23: 2358–64.

    CAS  Google Scholar 

  547. Mouritsen S, Meldal M, Werdelin O et al. MHC molecules protect T cell epitopes against proteolytic destruction. J Immunol 1992; 149: 1987–93.

    PubMed  CAS  Google Scholar 

  548. Rötzschke O, Falk K. Origin, structure and motifs of naturally processed MHC class II ligands. Curr Opin Immunol 1994; 6: 45–51.

    PubMed  Google Scholar 

  549. Werdelin O. Determinant protection. A hypothesis for the activity of immune response genes in the processing and presentation of antigens by macrophages. Scand J Immunol 1986; 24: 625–36.

    PubMed  CAS  Google Scholar 

  550. Buseyne F. Stevanovic S, Rammensee HG et al. Characterization of an HIV-1 p24sas epitope recognized by a CD8* cytotoxic T-cell clone. Immunol Letters 1997; 55: 145–149.

    CAS  Google Scholar 

  551. Falk K, Rötzschke O. Consensus motifs and ligands of MHC class I molecules. Sem Immunol 1993; 5: 81–94.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rammensee, HG., Bachmann, J., Stevanović, S. (1997). The Function. In: MHC Ligands and Peptide Motifs. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22162-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22162-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22164-8

  • Online ISBN: 978-3-662-22162-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics