Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 220 Accesses

Abstract

The basic property of liposomes to entrap water-soluble substances into their agueous interior and lipophilic ones in the lipid bilayer makes them potentially attractive carriers for a variety of diagnostic reporter moieties. Since the conception of using liposomes for this purpose,1 all four major fields of diagnostic imaging, gamma-radioscintigraphy, magnetic resonance imaging (MRI), radiography and ultrasonography, have been studied with liposomal-bound reporters.2 In fact, the use of liposomal imaging agents advanced to a stage of industrial production and Phase II/III clinical testing of 111In-radiolabeled liposomes.3 This has been followed by clinical testing with long circulating liposomes, initially for blood pool and tumor imaging4 (see chapter 18). The particular value of long circulating liposomes for diagnostic imaging is considered here with special focus on cardiovascular and lymph applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDougal IR, Dunnick JK, Goris ML. In vivo distribution of vesicles loaded with radiopharmaceuticals: A study of different routes of administration. J Nucl Med 1975; 16: 488–491.

    Google Scholar 

  2. Seltzer SE. The role of liposomes in diagnostic imaging. Radiology 1989; 171: 19–21.

    PubMed  CAS  Google Scholar 

  3. Presant CA, Turner AF, Proffitt RT. Potential for improvement in dinical decision-making: tumor imaging with In-111 labeled liposomes. Results of a Phase II-III study. J Liposome Res 1994; 4: 985–1009.

    Article  Google Scholar 

  4. Goins B, Klipper R, Blumhardt, R, Phillips WT. Development of PEG-coated liposomes with extended circulation time for blood pool imaging. Clin Nucl Med 1994; 19: 262.

    Article  Google Scholar 

  5. Rozenberg OA, Hanson KP. Radiopaque liposomes for imaging of the spleen and liver. Radiology 1983; 149: 877–878.

    PubMed  CAS  Google Scholar 

  6. Unger E, Fritz T, Shen D-K, Lund P, Sahn D, Ramaswami R, Matsunaga T, Yellowhair D, Kulik B. Gas filled lipid bilayers as imaging contrast agents. J Liposome Res 1994; 4: 861–874.

    Article  CAS  Google Scholar 

  7. Unger E, Shen DK, Fritz T, Lund P, Wu GL, Kulik B, DeYoung D, Standen J, Ovott T, Matsunaga T. Gas-filled liposomes as echocardiographic contrast agents in rabbits with myocardial infarction. Invest Radiol 1993; 28: 1155–1159.

    Article  PubMed  CAS  Google Scholar 

  8. Kabalka GW, Davis MA, Holmberg E, Maruyama K, Huang L. Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver. Magn Res Imaging 1991; 9: 373–377.

    Article  CAS  Google Scholar 

  9. Schwendener RA, Wuthrich R, Duewell S, Wehrli E, von Schulthess GK. A pharmacokinetic and MRI study of unilamellar gadolinium-, manganese-, and iron-DTPAstearate liposomes as organ-specific contrast agents. Invest Radiol 1990; 25: 922–932.

    Article  PubMed  CAS  Google Scholar 

  10. Hultborn KA, Larsson LG, Ragnhult I. The lymph drainage from the breast to the axillary and parasternal lymph nodes, studied with the aid of colloidal Au-198. Acta Radiol 1955; 43: 52–64.

    PubMed  CAS  Google Scholar 

  11. Unger E, Cardenas D, Zerella A, Fajardo LL, Tilcock C. Biodistribution and clearance of liposomal gadolinium-DTPA. Invest Radiol 1990; 25: 638–644.

    Article  PubMed  CAS  Google Scholar 

  12. Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 1987; 223: 42–46.

    Article  PubMed  CAS  Google Scholar 

  13. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268: 235–238.

    Article  PubMed  CAS  Google Scholar 

  14. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee K.-D, Woodle MC, Lasic DD, Redemann C, Martin FJ. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991; 88: 11460–11464.

    Article  PubMed  CAS  Google Scholar 

  15. Vaage J, Mayhew E, Lasic D, Martin F. Therapy of primary and metastatic mouse mammary carcinomas with doxorubucin encapsulated in long circulating liposomes. Int J Cancer 1992; 51: 942–948.

    Article  PubMed  CAS  Google Scholar 

  16. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Systems 1989; 6: 193–210.

    CAS  Google Scholar 

  17. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. CRC Crit Rev Ther Drug Carrier Syst 1987; 31123–193.

    Google Scholar 

  18. Rudolph AS, Klipper RW, Goins B, Phillips WT. In vivo biodistribution of radiolabeled blood substitute: 99mTc-labeled liposome-encapsulated hemoglobin in anesthetized rabbit. Proc Natl Acad Sci USA 1991; 88: 10976–10980.

    Article  PubMed  CAS  Google Scholar 

  19. Proffitt RT, Willimas LE, Presant CA, Tin GW, Uliana JA, Gamble RC, Baldeschweiler JD. Liposomal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. Science 1983; 220: 502–505.

    Article  PubMed  CAS  Google Scholar 

  20. Gabizon A, Price DC, Huberty J, Bresalier RS, Papahadjopoulos D. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res 1990; 50: 6371–6378.

    PubMed  CAS  Google Scholar 

  21. Goins B, Ligler FS, Rudolph AS. Inclusion of ganglioside GM, into liposome-encapsulated hemoglobin does not extend circulation persistence at clinically relevant doses. Artificial Cells, Blood Substitutes and Immobilization Biotechnology 1994; 22: 9–25.

    Article  CAS  Google Scholar 

  22. Oku N, Namba Y, Takeda A, Okada S. Tumor Imaging with technetium-99m-DTPA encapsulated in RES-avoiding liposomes. Nucl Med Biol 1993; 20: 407–412.

    Article  PubMed  CAS  Google Scholar 

  23. Torchilin VP, Papisov MI. Why do polyethyleneglycol-coated liposomes circulate so long? J Liposome Res 1994; 4: 725–739.

    Article  Google Scholar 

  24. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov, Jr. AA, Trubetskoy VS, Herron JN, Gentry CA. Poly(ethyleneglycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1994; 1195: 11–20.

    Article  PubMed  CAS  Google Scholar 

  25. Peterson HI. Tumor Blood Circulation. Boca Raton: CRC Press, 1979.

    Google Scholar 

  26. Arfors K-E, Rutili G, Sevensjo E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand 1979; 463: 93.

    CAS  Google Scholar 

  27. Woodle MC, 67Gallium-labeled liposomes with prolonged circulation:preparation and potential as nuclear imaging agents. Nucl Med Biol 1993; 20:149–155.

    Article  PubMed  CAS  Google Scholar 

  28. Tilcock C, Ahkong QF, Fisher D. 99mTc-labeling of lipid vesicles containing the lipophilic chelator PE-DTTA: effect of tin-to-chelate ratio, chelate content and surface polymer on labelin efficiency and biodistribution behavior. Nucl Med Biol 1994; 21: 89–96.

    Article  PubMed  CAS  Google Scholar 

  29. Boerman OC, Storm G, Oyen WJG, van Bloois L, van der Meer JWM, Crommelin DJA, Claessens RAMJ, Corstens FHM. Sterically stabilized liposomes labeled with indium-n1 to image focal infection in rats. J Nucl Med 1995; 36: i639 - i644.

    Google Scholar 

  30. Schwendener RA. Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for magnetic resonance imaging (MRI). J Liposome Res 1994; 4: 837–857.

    Article  CAS  Google Scholar 

  31. Khaw BA, Mattis JA, Melnicoff G, Strauss HW, Gold HK, Haber E, Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction. Hybridoma 1984; 3: 11–23.

    Article  PubMed  CAS  Google Scholar 

  32. Khaw BA, Yasuda T, Gold HK, Strauss HW, Haber E, Acute myocardial infarct imaging with indium-111-labeled monoclonal antimyosin Fab J Nucl Med 1987; 28: 1671–1678.

    CAS  Google Scholar 

  33. Torchilin VP, Klibanov AL, Huang L, O’Donnel S, Nossiff N, Khaw BA. Targeted accumulation of polyethylene-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992; 6: 2716–2719.

    PubMed  CAS  Google Scholar 

  34. Torchilin VP, Narula J, Halpern E, Khaw BA. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta 1996; 1279: 75–83.

    Article  PubMed  Google Scholar 

  35. Patel HM, Boodle KM, Vaughan-Jones R. Assessment of potential use of liposomes for lymphoscintigraphy and lymphatic drug delivery. Biochim Biophys Acta 1984; 801: 76–86.

    Article  PubMed  CAS  Google Scholar 

  36. Moghimi SM, Hawley AE, Christy NM, Gray T, Ilium L, Davis SS, Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph node. FEBS Lett 1994; 344: 25–30.

    Article  PubMed  CAS  Google Scholar 

  37. Trubetskoy VS, Cannillo JA, Milstein A, Wolf GL, Torchilin VP. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Res Imaging 1995; 13: 31–37.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trubetskoy, V.S., Torchilin, V.P. (1998). Long Circulating Liposomes for Diagnostic Imaging. In: Woodle, M.C., Storm, G. (eds) Long Circulating Liposomes: Old Drugs, New Therapeutics. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22115-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22115-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22117-4

  • Online ISBN: 978-3-662-22115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics