Skip to main content

DaunoXome® (Liposomal Daunorubicin) for First-Line Treatment of Advanced, HIV-Related Kaposi’s Sarcoma

  • Chapter
Book cover Long Circulating Liposomes: Old Drugs, New Therapeutics

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Kaposi’s sarcoma, the most common tumor occurring in human immunodeficiency virus (HIV)-infected individuals and persons with the acquired immunodeficiency syndrome (AIDS), has become a more aggressive, increasingly difficult-totreat tumor partly because of its rapid progression late in the course of AIDS.1–4 Despite significant progress in understanding and treating Kaposi’s sarcoma lesions cosmetically over the last 15 years, overall survival of patients with advanced, HIV-associated Kaposi’s sarcoma has remained unchanged,1 prompting continued research for effective and better tolerated therapies. By selectively enhancing drug delivery to tumor versus normal tissues, thereby enhancing the antitumor effects and limiting the toxicities of antineoplastic drugs, some liposomal delivery formulations have presented an exciting therapeutic advance in the treatment of advanced, HIV-associated Kaposi’s sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams DI. Acquired immunodeficiency syndrome and related malignancies. Semin Oncol 1991; 18 (5, suppl 7): 41–45.

    PubMed  CAS  Google Scholar 

  2. Beral V. Epidemiology of Kaposi’s sarcoma. Cancer Sury 1991; 10: 5–22.

    CAS  Google Scholar 

  3. Beral V, Peterman TA, Berkelman RL, Jaffe HW. Kaposi’s sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 1990; 335: 123–128.

    Article  PubMed  CAS  Google Scholar 

  4. Buchbinder A, Friedman-Kien AE. Clinical aspects of epidemic Kaposi’s sarcoma. Cancer Sury 1991; 10: 39–52.

    CAS  Google Scholar 

  5. Theologides A, Yarbro JW, Kennedy BJ. Daunomycin inhibition of DNA and RNA synthesis. Cancer 1968; 21: 16–21.

    Article  PubMed  CAS  Google Scholar 

  6. Andersson B, Beran M, Peterson C, Tribukait B. Significance of cellular pharmacokinetics for the cytotoxic effects of daunorubicin. Cancer Res 1982; 42: 178–183.

    PubMed  CAS  Google Scholar 

  7. Alberts DS, Bachur NR, Holtzman JL. The pharmacokinetics of daunomycin in man. Clin Pharmacol Ther 1971; 12: 96–104.

    PubMed  CAS  Google Scholar 

  8. McEvoy GK, ed. Daunorubicin hydrochloride. In: AHFS Drug Information 96. Bethesda, MD: American Society of Hospital Pharmacists, 1996; moo.

    Google Scholar 

  9. Calabresi P, Chabner BA. Antineoplastic agents. In: Gilman AG, Rall TW, Nies AS, Taylor P, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 8th ed. Elmsford, NY: Pergamon Press, 1990: 1209–1263.

    Google Scholar 

  10. Wang JJ, Chervinsky DS, Rosen JM. Comparative biochemical studies of adriamycin and daunomycin in leukemic cells. Cancer Res 1972; 32511–515.

    Google Scholar 

  11. Warren BA. The vascular morphology of tumors. In: Peterson H-I, ed. Tumor Blood Circulation: Angiogenesis, Vascular Morphology, and Blood Flow of Experimental and Human Tumors. Boca Raton, Fl: CRC Press, Inc. 1979: 1–47.

    Google Scholar 

  12. Hwang KJ, Padki MM, Chow DD et al. Uptake of small liposomes by non-reticuloendothelial tissues. Biochim Biophys Acta 1987; 901: 88–96.

    Article  PubMed  CAS  Google Scholar 

  13. Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991; 51: 265–273.

    PubMed  CAS  Google Scholar 

  14. Poste G. Liposome targeting in vivo: problems and opportunities. Biol Cell 1983; 47: 19–38.

    CAS  Google Scholar 

  15. Skinner SA, Tutton PJM, O’Brien PE. Microvascular architecture of experimental colon tumors in the rat. Cancer Res 1990; 50: 2411–2417.

    PubMed  CAS  Google Scholar 

  16. Weiss L, Orr FW, Honn KV. Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clin Exp Metastasis 1989; 7: 127–167.

    Article  PubMed  CAS  Google Scholar 

  17. Poste G, Bucana C, Raz A et al. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res 1982; 42: 1412–1422.

    PubMed  CAS  Google Scholar 

  18. Data on file. NeXstar Pharmaceuticals, Inc., San Dimas, CA.

    Google Scholar 

  19. Forssen EA, Malé-Brune R, Adler-Moore JP et al. Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res 1996; 56: 2066–2075.

    PubMed  CAS  Google Scholar 

  20. Forssen EA, Ross ME. DaunoXome’ treatment of solid tumors: preclinical and clinical investigations. J Liposome Res 1994; 4: 481–512.

    Article  Google Scholar 

  21. DaunoXome (daunorubicin citrate liposome injection) Prescribing Information. NeXstar Pharmaceuticals, Inc., San Dimas, Calif.

    Google Scholar 

  22. Papahadjopoulos D, Jacobson K, Nir S, Isac T. Phase transitions in phospholipid vesicles: fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta 1973a; 311: 330–348.

    Article  PubMed  CAS  Google Scholar 

  23. Kerr DJ, Kaye SB. Aspects of cytotoxic drug penetration, with particular reference to anthracyclines. Cancer Chemother Pharmacol 1987; 19: 1–5.

    Article  PubMed  CAS  Google Scholar 

  24. Papahadjopoulos D, Cowden M, Kimelberg H. Role of cholesterol in membranes: effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim Biophys Acta 1973b; 330: 8–26.

    Article  PubMed  CAS  Google Scholar 

  25. Proffitt RT, Williams LE, Presant CA et al. Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice. J Nucl Med 1983a; 24: 45–51.

    PubMed  CAS  Google Scholar 

  26. Turner AF, Presant CA, Proffitt RT et al. In-in-labeled liposomes: dosimetry and tumor depiction. Radiology 1988; 166: 761–765.

    PubMed  CAS  Google Scholar 

  27. Williams LE, Proffitt RT, Lovisatti L. Possible applications of phospholipid vesicles (liposomes) in diagnostic radiology. J Nucl Med Allied Sci 1984; 28: 35–45.

    PubMed  CAS  Google Scholar 

  28. Williams LE, Duda RB, Proffitt RT et al. Tumor uptake as a function of tumor mass: a mathematic model. J Nucl Med 1988; 29: 103–109.

    PubMed  CAS  Google Scholar 

  29. Proffitt RT, Williams LE, Presant CA et al. Liposomal blockage of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. Science 1983b; 220: 502–505.

    Article  PubMed  CAS  Google Scholar 

  30. Presant CA, Proffitt RT, Turner AF et al. Successful imaging of human cancer with indium-ni-labeled phospholipid vesicles. Cancer 1988; 62: 905–911.

    Article  PubMed  CAS  Google Scholar 

  31. Presant CA, Blayney D, Proffitt RT et al. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-ni-labelled liposomes. Lancet 1990; 335: 1307–1309.

    Article  PubMed  CAS  Google Scholar 

  32. Gregoriadis G, Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun 1979; 89: 1287–1293.

    Article  PubMed  CAS  Google Scholar 

  33. Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 1992; 52: 3255–3261.

    PubMed  CAS  Google Scholar 

  34. Forssen E, Chan KK, Muggia FM et al. Clinical pharmacokinetics (PK) of liposomal daunorubicin (VS103). Proc Am Assoc Cancer Res 1990; 31: 181 Abstract 1078.

    Google Scholar 

  35. Gill PS, Espina BM, Muggia F et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995; 13: 996–1003.

    PubMed  CAS  Google Scholar 

  36. Guaglianone P, Chan K, DelaFlor-Weiss E et al. Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 1994; 12: 103–110.

    Article  PubMed  CAS  Google Scholar 

  37. Eksborg S, Ehrsson H, Ekqvist B. Protein binding of anthraquinone glycosides, with special reference to Adriamycin. Cancer Chemother Pharmacol 1982; 10: 7–10.

    Article  PubMed  CAS  Google Scholar 

  38. Robert J, Gianni L. Pharmacokinetics and metabolism of anthracyclines. Cancer Sury 1993; 17: 219–252.

    CAS  Google Scholar 

  39. Kaplan L. Neoplastic complications of HIV disease. Infect Med 1992; 9 (suppl F): 2o.

    Google Scholar 

  40. Gill PS, Rarick M, McCutchan JA et al. Systemic treatment of AIDS-associated Kaposi’s sarcoma: results of a randomized trial. Am J Med 1991; 90: 427–433.

    PubMed  CAS  Google Scholar 

  41. Presant CA, Scolaro M, Kennedy P et al. Liposomal daunorubicin treatment of HIV-associated Kaposi’s sarcoma. Lancet 1993; 341: 1242–1243.

    Article  PubMed  CAS  Google Scholar 

  42. Money-Kyrle JF, Bates F, Ready J et al. Liposomal daunorubicin in advanced Kaposi’s sarcoma: a phase II study. Clin Oncol 1993; 5: 367–371.

    Article  CAS  Google Scholar 

  43. Krown SE, Metroka C, Wernz JC. Kaposi’s sarcoma in the acquired immune deficiency syndrome: a proposal for uniform evaluation, response, and staging criteria. J Clin Oncol 1989; 7x201–1207.

    Google Scholar 

  44. Cerubidine (Daunorubicin HCL) for Injection Prescribing Information. Emeryville, CA: Chiron Therapeutics, January 1995.

    Google Scholar 

  45. Gill PS, Wernz J, Scadden DT et al. Lack of cardiac toxicity of liposomal encapsulated daunorubicin (DaunoXome®) after long term use in AIDS related Kaposi’s sarcoma. Ann Oncol 1996; 7 (suppl 1); 134.

    Google Scholar 

  46. Tulpule A, Rarick MU, Kolitz J et al. Liposomal encapsulated daunorubicin (DaunoXome®) has activity in relapsed/refractory low grade and intermediate grade non-Hodgkin’s lymphoma (NHL). Blood 1996; 88 (10, suppl 1): 92a.

    Google Scholar 

  47. Gill PS, Wernz J, Scadden DT et al. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 1996; 14: 2353–2364.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukwaya, G., Forssen, E.A., Schmidt, P., Ross, M. (1998). DaunoXome® (Liposomal Daunorubicin) for First-Line Treatment of Advanced, HIV-Related Kaposi’s Sarcoma. In: Woodle, M.C., Storm, G. (eds) Long Circulating Liposomes: Old Drugs, New Therapeutics. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22115-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22115-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22117-4

  • Online ISBN: 978-3-662-22115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics