Skip to main content

Long Circulating Liposome Therapeutics: From Concept to Clinical Reality

  • Chapter

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

There is a strong need for improved drug delivery in clinical practice. The performance of both existing and promising new drugs, especially the new biotechnology derived agents based on biomacromolecules such as proteins, would benefit greatly from delivery strategies which ensure the delivery of the drug at the right site, at the right time and in the right concentration. Over the past few decades, there has been a multitude of efforts aimed at developing new drug delivery systems in order to improve the poor benefit/risk ratio associated with many drugs used for the treatment of life-threatening diseases, such as cancer and certain infectious diseases. Among a variety of delivery systems that have been devised are many particulate carrier systems, for example microspheres, nanoparticles, lipoproteins, micellular systems, and liposomes.1–6 Liposomes have been investigated extensively for over 20 years and the findings of mostly preclinical studies have demonstrated their versatility to accommodate a large variety of drugs for a wide range of therapies. These efforts have now culminated in several liposomal formulations in clinical trials. Initial introduction of approved products is primarily based on long circulating forms of liposomes described here and in other chapters of this volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lasic DD, ed. Liposomes: from Physics to Applications. Amsterdam: Elsevier, 1993: 575.

    Google Scholar 

  2. Storm G, Vingerhoeds MH, Bakker-Woudenberg IAMJ et al. Biodistribution and therapeutic utility of liposomal drug carrier systems. J Lipo Res 1993; 3: 551 - 562.

    Google Scholar 

  3. Domb AJ. Polymeric Site-Specific Pharmacotherapy. New York: John Wiley & Sons, 1994.

    Google Scholar 

  4. Crommelin DJA, Schreier H. Liposomes. In: Kreuter J, ed. Colloidal Drug Delivery Systems. New York: Marcel Dekker, Inc., 1994: 73 - 190.

    Google Scholar 

  5. Barenholz Y, Crommelin DJA. Liposomes as pharmaceutical dosage forms. In: Boylan J.J., ed. Encyclopedia of Pharmaceutical Technology. New York: Marcel Dekker Inc., 1994: 1 - 39.

    Google Scholar 

  6. Storm G, Belliot SO, Daemen T et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Delivery Rev 1995; 17: 31 - 48.

    Article  CAS  Google Scholar 

  7. Amselem S, Cohen R, Barenholz Y. In vitro tests to predict in vivo performance of liposomal dosage forms. Chemistry and Physics of Lipids 1993; 64: 219 - 237.

    Article  PubMed  CAS  Google Scholar 

  8. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Critical Reviews in Therapeutics and Drug Carrier Systems 1987; 3: 123 - 193.

    CAS  Google Scholar 

  9. Gregoriadis G. Liposomes as Drug Carriers. Recent Trends and Progress. In: New York: John Wiley & Sons, 1988.

    Google Scholar 

  10. Porter CJ, Davies MC, Davis SS et al. Microparticulate systems for site-specific therapy-bone marrow targeting. In: Domb AJ, ed. Polymeric Site-Specific Pharmacotherapy. New York: John Wiley & Sons, 1994: 157 - 204.

    Google Scholar 

  11. Storm G, Oussoren C, Peeters PAM et al. Tolerability of liposomes in vivo. In: Gregoriadis G, ed. Liposome Technology. Boca Raton: CRC Press, 1993: 345 - 383.

    Google Scholar 

  12. Thorpe PE, Burrows FJ. Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Research Treatment 1995; 36: 237 - 251.

    Article  CAS  Google Scholar 

  13. Jain RK. Delivery of molecular medicine to solid tumors. Science 1996; 271: 1079 - 1080.

    Article  PubMed  CAS  Google Scholar 

  14. Pimm MV, Hudecz F. Biodistribution in tumour-bearing mice of polycationic, amphoteric and plyanionic branched polypeptides with a poly(L-lysine) backbone labelled with 125I and 111In: tumour accumlation less than that of labelled serum proteins. J Cancer Res Clin Oncol 1996; 122: 45 - 54.

    Article  PubMed  CAS  Google Scholar 

  15. Gabizon AA. Selective tumor localization and improved therapeutic index of antracyclines encapsulated in long circulating liposomes. Cancer Research 1992; 52:891

    PubMed  CAS  Google Scholar 

  16. Forssen EA, Male-Brune R, Adler-Moore JP et al. Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Research 1996; 56: 2066 - 2075.

    PubMed  CAS  Google Scholar 

  17. Storm G, Nassander UK, Vingerhoeds MH et al. Antibody-targeted liposomes to deliver doxorubicin to ovarian cancer cells. J Lipo Res 1994; 4: 641 - 666.

    Article  Google Scholar 

  18. Woodle MC. Sterically stabilized liposome therapeutics. Adv Drug Del Rev 1995; 16: 249 - 265.

    Article  CAS  Google Scholar 

  19. Crommelin DJA, Storm G. Liposomes, Quo Vadis? A personal viewpoint. In: F. Puisieux PC, J. Delattre, Devissaguet J-Ph, eds. Liposomes, New Systems and New Trends in the Applications. Paris: Editions de Sante, 1995: 767 - 781.

    Google Scholar 

  20. Wilschut J. In: Leserman LD, Barbet J, eds. Methologies des Liposomes. Paris: INSERM, 1982: 9 - 24.

    Google Scholar 

  21. Hwang KJ. In: Ostro M, ed. Liposomes from Biophysics to Therapeutics. New York: Marcel Dekker, 1987: 109 - 156.

    Google Scholar 

  22. Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Research 1992; 52: 3255 - 3261.

    PubMed  CAS  Google Scholar 

  23. Forssen EA, Ross ME. Daunoxome treatment of solid tumors: preclinical and clinical investigations. J Lipo Res 1994; 4: 481 - 512.

    Article  Google Scholar 

  24. Riess JG. Fluorinated vesicles from self-aggregated perfluoroalkylated amphipliles. J Drug Targ 1994.

    Google Scholar 

  25. Frezard F, Santaella C, Montisci MJ et al. Fluorinated phosphatidylcholine-based liposomes: H+/Na+ permeability, active doxorubicin encapsulation and stability, in human serum. Biochimica et Biophysica Acta 1994; 94: 61 - 68.

    Google Scholar 

  26. Allen T. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 1994; 13: 285 - 309.

    Article  CAS  Google Scholar 

  27. Gabizon AA. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Delivery Reviews 1995; 16: 285 - 294.

    Article  CAS  Google Scholar 

  28. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta 1992; 1113: 171 - 199.

    Article  PubMed  CAS  Google Scholar 

  29. Lasic DD, Martin FJ, eds. Stealth Liposomes. Boca Raton: CRC Press, 1995: 289.

    Google Scholar 

  30. Woodle MC, Newman MS, Working PK. Biological properties of sterically stabilized liposomes. In: Lasic D, Martin F, eds. Stealth Liposomes. Boca Raton: CRC Press, 1995: 103 - 118.

    Google Scholar 

  31. Oku N, Tokudome Y, Tsukada H et al. In vivo trafficking of long circulating liposomes in tumour-bearing mice determined by positron emission tomography. Biopharm Drug Dispos 1996; 17: 435 - 441.

    Article  PubMed  CAS  Google Scholar 

  32. Vaage J, Barbera E. Tissue uptake and therapeutic effects of Stealth doxorubicin. In: Lasic D, Martin F, eds. Stealth Liposomes. Boca Raton: CRC Press, 1995: 149 - 171.

    Google Scholar 

  33. Huang SK, Martin FJ, Firend DS et al. Mechanism of Stealth liposomes accumulation in some pathological tissues. In: Lasic D, Martin F, eds. Stealth Liposomes. Boca Raton: CRC Press, 1995: 119 - 126.

    Google Scholar 

  34. Gabizon A, Price DC, Huberty J et al. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res 1990; 50: 6371 - 6378.

    PubMed  CAS  Google Scholar 

  35. Oku N, Doi K, Namba Y et al. Therapeutic effect of adriamycin encapsulated in long circulating liposomes on Meth-A-sarcoma-bearing mice. Int J Cancer 1994; 58: 415 - 419.

    Article  PubMed  CAS  Google Scholar 

  36. Mayer LD, Tai LC, Bally MB et al. Characterization of liposomal systems containing Doxorubicin entrapped in response to pH gradients. Biochimica et Biophysica Acta 1990; 1025: 143 - 151.

    Article  PubMed  CAS  Google Scholar 

  37. Haran G, Cohen R, Bar LK et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochimica et Biophysica Acta 1993; 1151: 201 - 215.

    Article  PubMed  CAS  Google Scholar 

  38. Lasic DD, Frederik P M, Stuart MCA et al. Gelation of liposome interior: a novel method for drug encapsulation. FEBS Letters 1992; 312: 255 - 258.

    Article  PubMed  CAS  Google Scholar 

  39. Northfelt, DW, Martin FJ, Kaplan LD et al. Pharmacokinetics, tumor localization and safety of Doxil (liposomal doxorubicin) in AIDS patients with Kaposi’s sarcoma. Proc Am Soc Clin Oncol 1993; 12: 51.

    Google Scholar 

  40. Gabizon A, Catane R, Uziely B et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research 1994; 54: 987 - 992.

    PubMed  CAS  Google Scholar 

  41. Iga K, Ogawa Y, Toguchi H. Heat-induced drug release rate and maximal targeting index of thermosensitive liposome in tumor-bearing mice. Pharm Res 1992; 9: 658 - 662.

    Article  PubMed  CAS  Google Scholar 

  42. Maruyama K, Unezaki S, Takahashi N et al. Enhanced delivery of doxorubicin to tumor by long circulating thermosensitive liposomes and local hyperthermia. Biochim Biophys Acta 1993; 1149: 209 - 216.

    Article  PubMed  CAS  Google Scholar 

  43. Huang SK, Stauffer PR, Hong K et al. Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Research 1994; 54: 2186 - 2191.

    PubMed  CAS  Google Scholar 

  44. Ning S, MacLeod K, Abra RM et al. Hyperthermia induces doxorubicin release from long circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 1994; 29: 827 - 834.

    Article  PubMed  CAS  Google Scholar 

  45. Unezaki S, Maruyama K, Takahashi N et al. Enhanced delivery and antitumor activity of doxorubicin using long circulating thermosensitive liposomes containing amphipathic polyethylene glyco in combination with local hyperthemia. Pharm Res 1994; 11: 1180 - 1185.

    Article  PubMed  CAS  Google Scholar 

  46. Oku N, Naruse R, Doi K et al. Potential usage of thermosensitive liposomes for macromolecule delivery. Biochim Biophys Acta 1994; 91: 389 - 391.

    Google Scholar 

  47. Allen TM, Mehra T, Hansen C et al. Stealth liposomes: an improved sustained release system for i-b-D-arabinofuranosylcytosine. Cancer Research 1992; 52: 2431 - 2439.

    PubMed  CAS  Google Scholar 

  48. Mayhew EG, Lasic DD, Babbar S et al. Pharmacokinetics and antitumor activity of epirubicin encapsulated in long circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer 1992; 51: 302 - 309.

    Article  PubMed  CAS  Google Scholar 

  49. Mayer LD, Bally MB, Loughrey H et al. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1z10 and P388 tumors. Cancer Research 1990; 50: 575 - 579.

    PubMed  CAS  Google Scholar 

  50. Vaage J, Donovan D, Mayhew E et al. Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilized liposomes. Int J Cancer 1993; 54: 959 - 964.

    Article  PubMed  CAS  Google Scholar 

  51. Beck P, Kreuter J, Reszka R et al. Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxidity of the anticancer drug mitoxantrone. J Microencapsulation 1993; 10: 101 - 114.

    Article  PubMed  CAS  Google Scholar 

  52. Genne P, Olsson NO, Gutierrez G et al. Liposomal mitozantrone for the local treatment of peritoneal carcinomatosis induced by colon cancer cells in mice. Anticancer Drug Des 1994; 9: 73 - 84.

    PubMed  CAS  Google Scholar 

  53. Tokudome Y, Oku N, Doi K et al. Antitumor activity of vincristine encapsulated in glucuronide-modified long circulating liposomes in mice bearing Meth A sarcoma. Biochim Biophys Acta 1996; 1279: 70 - 74.

    Article  PubMed  Google Scholar 

  54. Bakker-Woudenberg IAJM, Lokerse AF, ten Kate MT et al. Liposomes with prolonged blood circulation and selective localization in Klebsiella pneumoniae-infected lung tissue. J Infect Dis 1993; 168: 164 - 171.

    Google Scholar 

  55. Bakker-Woudenberg IAJM, ten Kate MT, Stearne-Cullen LET et al. Efficacy of gentamicin or ceftazidime entrapped in liposomes with prolonged blood circulation and enhanced localization in Klebsiella Pneumoniae infected lung tissue. J Infect Dis 1995.

    Google Scholar 

  56. van Etten EWM, van Vianen W, Tijhuis RHG et al. Sterically stabilized amphotericin B-liposomes: toxicity and biodistribution in mice. J Controlled Rel 1995; 37: 123 - 129.

    Article  Google Scholar 

  57. Kedar E, Rutkowsky Y, Braun E et al. Delivery of cytokines by liposomes. I. Preparation and characterization of interleukin-2 encapsulated in long circulating sterically stabilized liposomes. J Immunther. Emphasis Tumor Immunol 1994; 16: 47 - 59.

    Article  CAS  Google Scholar 

  58. Woodle MC. 67Gallium-labeled liposomes with prolonged circulation: Preparation and potential as nuclear imaging agents. Nucl Med Biol 1993; 20: 149 - 155.

    CAS  Google Scholar 

  59. Tilcock C, Ahkong QF, Fisher D. Polymer-derivatized technetium 99mTc-labeled liposomal blood pool agents for nuclear medicine applications. Biochimica et Biophysica Acta 1993; 1148: 77 - 84.

    Article  PubMed  CAS  Google Scholar 

  60. Oku N, Namba Y, Takeda A et al. Tumor imaging with technetium-99m-DTPA encapsulated in RES-avoiding liposomes. Nucl Med Biol 1993; 20: 407 - 412.

    Article  PubMed  CAS  Google Scholar 

  61. Kumar S, Singh T, Khar RK et al. Evaluation of sterically stabilized liposomes as a vehicle for targeting technetium-99m labelled radiopharmaceuticals. Pharmazie 1993; 48: 613 - 616.

    PubMed  CAS  Google Scholar 

  62. Tilcock C. Imaging tools: liposomal agents for nuclear medicine, computed tomography, magnetic resonance, and ultrasound. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 225 - 240.

    Google Scholar 

  63. Boerman OC, Storm G, Van Oyen W et al. Sterically stabilized liposomes labeled with indium-111 to image focal infection. J Nucl Med 1995; 36: 1639 - 1644.

    PubMed  CAS  Google Scholar 

  64. Boerman OC, Oyen WJG, Van Bloois L et al. Optimization of 99m Tc-labeled PEG-liposomes to image focal infection: effects of particle size and circulation time. J Nucl Med 1997: (in press).

    Google Scholar 

  65. Oyen WJG, Boerman OC, Storm G et al. Labeled StealthTM liposomes in experimental infection: an alternative for leukocyte scintigraphy? Nucl Med Commun 1996; 17: 742 - 748.

    Article  PubMed  CAS  Google Scholar 

  66. Oyen WJG, Boerman OC, Storm G et al. Detecting infection and inflammation with technetium-99m-labeled StealthTM liposomes. J Nucl Med 1996; 37: 1392 - 1397.

    PubMed  CAS  Google Scholar 

  67. Storm G, Koppenhagen FJ, Heeremans ALM et al. Novel developments in liposomal delivery of peptides and proteins. J Controlled Rel 1995; 36: 19 - 24.

    Article  CAS  Google Scholar 

  68. Woodle MC, Storm G, Newman MS et al. Prolonged Systemic delivery of peptide drugs by long circulating liposomes: Illustration with vasopressin in the Brattleboro rat. Pharm Res 1992; 9: 260 - 265.

    Article  PubMed  CAS  Google Scholar 

  69. Vingerhoeds MH, Storm G, Crommelin DJA. Immunoliposomes in vivo. Immuno Methods 1994; 4: 259 - 272.

    Article  CAS  Google Scholar 

  70. Crommelin DJA, Herron J, Storm G. (Protein)-targeted delivery with particulate systems. In: Lee VHL, H, M, Mizushima YM, eds. Trends and future perspectives in peptide and protein delivery. Harwood Academic Publishers, GmbH, 1994: 207 - 239.

    Google Scholar 

  71. Blume G, Cevc G, Crommelin DJA et al. Specific targeting with (polyethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1993; 1149: 180 - 184.

    Article  PubMed  CAS  Google Scholar 

  72. Allen TM, Agrawal AK, Ahmad I et al. Antibody-mediated targeting of long circulating (StealthTM) liposomes. J Lipo Res 1994; 4: 1 - 25.

    Article  CAS  Google Scholar 

  73. Maruyama K, Takizawa T, Yuda T et al. Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochimica et Biophysica Acta 1995; 1234: 74 - 80.

    Article  PubMed  Google Scholar 

  74. Zalipsky S, Poulikas P, Mullah N et al. Increased systemic exposure of peptides by covalent fixation to extremities of PEG-grafted liposomes. In: Western Biotech Conference. San Diego: American Chemical Society, 1995.

    Google Scholar 

  75. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Bio Chem 1994; 269: 3198 - 3204.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Storm, G., Woodle, M.C. (1998). Long Circulating Liposome Therapeutics: From Concept to Clinical Reality. In: Woodle, M.C., Storm, G. (eds) Long Circulating Liposomes: Old Drugs, New Therapeutics. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22115-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22115-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22117-4

  • Online ISBN: 978-3-662-22115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics