Skip to main content

IL-10 and Bone Formation/Hematopoiesis

  • Chapter
  • 124 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Considering the anatomical localization of bone and bone marrow it is not surprising that both tissues are composed of cells from hematopoietic as well as from stromal origin. Indeed, apart from the stroma-derived osteoblasts and osteocytes, which are characterized by their ability to produce a mineralized matrix1,2 bone also contains osteoclasts. Osteoclasts belong to the hematopoietic lineage and have a lot in common with macrophages and characteristically resorb bone.3,4 The hematopoietic compartment of the bone marrow on the other hand, is functionally and structurally supported by a microenvironment of stromal elements including adipocytes, fibroblasts, endothelial cells and undifferentiated mesenchymal cells. These mesenchymal cells represent a reservoir of “uncommitted”, self-renewing cells which differentiate into various stromal elements, including bone.2,5 Under normal conditions, hematopoiesis and stromal differentiation require complex sequences of cellular events that are modulated by site-specific and cell-specific signals capable of initializing and promoting the recruitment and proliferation of the appropriate cells at the right time. These signals are mediated by hormones, prostaglandins, growth factors and cytokines which either reside in the bone matrix or in the bone marrow. The goal of this chapter is to review the effects of interleukin-10 (IL-10) on bone formation and hematopoiesis. IL-10 was initially described as cytokine synthesis inhibiting factor (CSIF) based on its potential to block the synthesis of cytokines produced by type 2 helper T cells.6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cyto 1976; 47: 327–59.

    Article  CAS  Google Scholar 

  2. Owen ME. Lineage of osteogenic cells and their relationship to the stromal system.. Calcif Tissue Int 1994; 36: S5 - S6.

    Google Scholar 

  3. Ash P, Loutit JF, Townsend KMS. Osteoclasts derived from haematopoietic stem cells. Nature 1980; 283: 669–70.

    Article  PubMed  CAS  Google Scholar 

  4. Udagawa N, Takahashi N, Akatsu T et al. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived. stromal cells. Proc Natl Acad Sci USA 1990; 87: 7260–64.

    Article  PubMed  CAS  Google Scholar 

  5. Beresford J. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 1989; 240: 270–80.

    PubMed  Google Scholar 

  6. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse helper T cells. V. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med 1989; 170: 2081–95.

    Article  PubMed  CAS  Google Scholar 

  7. Friedenstein A, Chailaklyan RK, Latsinik NV et al. Stromal cells responsible for transferring the microenvironment of hemopoietic tissue Transplantation 1974; 17: 331–40.

    CAS  Google Scholar 

  8. Ashton BA, Allen TD, Howlett CR, et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop 1980; 151: 294–307.

    PubMed  Google Scholar 

  9. Benayahu D, Kletter D, Zipori D et al. Bone marrow derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic activity in vivo. J Cell Physiol 1989; 140: 1–7.

    Article  PubMed  CAS  Google Scholar 

  10. Mathieu E, Schoeters G, Van der Plaetse R et al. Establishment of an osteogenic cell line derived from adult mouse bone marrow stroma by use of a recombinant retrovirus. Calcif Tissue Int 1992; 50: 362–71.

    Article  PubMed  CAS  Google Scholar 

  11. Falla N, Van Vlasselaer P, Bierkens J et al. Characterization of a 5-Fuorouracil enriched osteoprogenitor population of the mutine bone marrow Blood 1993; 82: 3580–91.

    CAS  Google Scholar 

  12. Jacobsen K, Miyake K, Kincade PW et al. Higly restricted expression of a stromal cell determinant in mouse bone marrow in vivo. J Exp Med 1992; 176: 927–35.

    Article  PubMed  CAS  Google Scholar 

  13. Imhof BA, Schlinger C, Handloser K et al. Monoclonal antibodies that block adhesion of B cell progenitors to bone marrow stroma in vitro prevent B cell differentiation in vivo. Eur J Immunol 1991; 21: 2043–49.

    Article  PubMed  CAS  Google Scholar 

  14. Simmons PJ, Torok-Storb B. CD34 expres¬sion by stromal precursors in normal hu¬man adult bone marrow. Blood 1991; 78: 2848–53.

    PubMed  CAS  Google Scholar 

  15. Huang S, Terstappen LWMM. Formation of haemopoeietic micro-environment and hemopoietic stem cells from single human bone marrow stem cells. Nature 1993; 360: 745–49.

    Google Scholar 

  16. Van Vlasselaer P, Borremans B, Van Den Heuvel R et al. Interleukin 10 inhibits the osteogenic activity of mouse bone marrow. Blood 1993; 82: 2361–70.

    PubMed  Google Scholar 

  17. Sudo H, Kodama H, Amagai Y et al. In vitro differentiation and calcification in a new clonal osteogenic cell line from newborn mouse calvaria. J Cell Biol 1983; 96: 191–98.

    Article  PubMed  CAS  Google Scholar 

  18. Sporn MB, Roberts AB, Wakefield LM et al. Transforming growth factor-13: biological and biochemical function and structure. Science 1986; 233: 532–34.

    Article  PubMed  CAS  Google Scholar 

  19. Massague J. The TGF- 3 family of growth and differentiation factors. Cell 1987; 49: 437–38.

    Article  PubMed  CAS  Google Scholar 

  20. Noda M, Rodan GA. Type-beta transforming growth factor inhibibts proliferation and expression of alkaline phosphatase in murine oosteoblast-like cells. Biochem Biophys Res Commun 1986; 140: 56–65.

    Article  PubMed  CAS  Google Scholar 

  21. Rosen DM, Stempien SA, Thompson AY et al. Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 1988; 134: 337–46.

    Article  PubMed  CAS  Google Scholar 

  22. Hauschka PV, Maurakos AE, Lafraty MD et al. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 1986; 261: 12665–74.

    PubMed  CAS  Google Scholar 

  23. Gehron-Robey PC, Young MF, Flanders KC et al. Osteoblasts synthesize and respond to TGF-ß in vitro. J Cell Biol 1987; 105: 457–63.

    Article  Google Scholar 

  24. Van Vlasselaer P, Borremans B, Van Gorp U et al. Interleukin 10 inhibits transforming growth factor-ß synthesis required for osteogenic commitment of mouse bone marrow cells. J Cell Biol 1994; 124: 569–77.

    Article  PubMed  Google Scholar 

  25. Fiorentino DF, Zlotnik A, Mosmann TR et al. IL-10 inhibibts cytokine production by activated macrophages J Immunol 1991; 147: 3815–22.

    CAS  Google Scholar 

  26. de Waal Malefyt R, Abrams J, Bennett B et al. IL-10 inhibibts cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.. J Exp Med 1991; 174: 1209–20.

    Article  Google Scholar 

  27. MacNeil IA, Suda T, Moore K et al. Interleukin 10: A novel growth co-factor for mature and immature thymocytes. J Immunol 1990; 145: 4167–73.

    PubMed  CAS  Google Scholar 

  28. Go N, Castle B, Barrett R et al. Interleukin 10; A novel B cell stimulatory factor. Unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 1990; 172: 1625–31.

    Article  PubMed  CAS  Google Scholar 

  29. de Waal Malefyt R, Haanen J, Spits H et al. IL-10 and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen presenting capacity of monocytes via downregulation of Class II MHC expression. J Exp Med 1991; 174: 915–24.

    Article  Google Scholar 

  30. Thompson-Snipes L, Dhar V, Bond MW et al. Interleukin 10: A novel stimulatory factor for mast cells and their progenitors. J Exp Med 1991; 173: 507–10.

    Article  PubMed  CAS  Google Scholar 

  31. Rennick D, Hunte B, Dang W et al. Interleukin 10 promotes the growth of megakaryocytes, mast cells, and multilineage colonies; analysis with committed progenitors and ThylloScal + stem cells. Exp Hematol 1994; 22: 136–41.

    PubMed  CAS  Google Scholar 

  32. Ploemacher RE, van der Sluijs JP, Voerman JSA et al. An in vitro limiting dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 1989; 74: 2755–63.

    PubMed  CAS  Google Scholar 

  33. van Vlasselaer P, Falla N, van den Heuvel R, Dasch J, de Waal Malefijt R. Interleukin-10 (IL-10) drives osteogenic bone marow stroma towards hematopoietic support by blocking endogenous transforming growth factor beta (TGF-j3) synthesis. Clin Ortho and Rel Res 1994.

    Google Scholar 

  34. Ohta M, Greenberger JS, Anklesaria P et al. Two forms of transforming growth factor 13 distinguished by multipotential hematopoietic progenitor cells. Nature 1987; 329: 539–41.

    Article  PubMed  CAS  Google Scholar 

  35. Carlin JA, Higley HR, Creson JR et al. Transforming growth factor 131 systemically modulates granuloid, erythroid, lymphoid and thrombocytic cells in mice. Exp Hematol 1992; 20: 943–50.

    Google Scholar 

  36. Hatzfeld J, Li ML, Brown EL et al. Release of early hematopoietic progenitors from quiescence by antisense transforming growth factor 131 or Rb oligonucleotides. J Exp Med 1991; 174: 925–29.

    Article  PubMed  CAS  Google Scholar 

  37. Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor 131 gne results in multifocal inflammatory disease. Nature 1992; 359: 693–99.

    Article  PubMed  CAS  Google Scholar 

  38. Hayashi SI, Gimble JM, Henley A et al. Differential effects of TGF-(31 on lymphohemopoiesis in long-term bone marrow cultures. Blood 1989; 74: 1711–19.

    PubMed  CAS  Google Scholar 

  39. Dexter T. Stromal cell associated hematopoiesis. J Cell Physiol 1982; (suppl 1 ): 87–94

    Google Scholar 

  40. Allen TD, Dexter T. The essential cells of the hematopoietic environment. Exp Hematol 1984; 12: 517–21.

    PubMed  CAS  Google Scholar 

  41. Tavassoli M. Marrow adipose cells and hematopoiesis: an interpretative review. Exp Hematol 1984; 12: 139–46.

    PubMed  CAS  Google Scholar 

  42. Ignotz RA, Massague J. Type 13 transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc Natl Acad Sci USA 1985; 82: 853034.

    Google Scholar 

  43. van Vlasselaer P, Falla N, Snoeck H, Mathieu E. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood 1994; 84: 753–63.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Vlasselaer, P. (1995). IL-10 and Bone Formation/Hematopoiesis. In: Interleukin-10. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22038-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22038-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22040-5

  • Online ISBN: 978-3-662-22038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics