Skip to main content

Molecular Biology of Interleukin-10 and its Receptor

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The cytokine interleukin-10 (IL-10) was initially described as cytokine synthesis inhibitory factor (CSIF), a product of mouse T helper 2 (Th2) clones which inhibited cytokine synthesis—and therefore the effector functions—of mouse T helper 1 (Thl) clones.1–3 IL-10 potently suppresses activation of macrophages, inhibiting release of monokines and the ability to serve as accessory cells for stimulation of T cell and natural killer (NK) cell function. IL-10 also is a costimulatory molecule for proliferation and differentiation of B cells, and can serve as a cofactor for stimulating growth and differentiation of T cells, mouse thymocytes, and mouse myeloid cells.4,5 Here we discuss studies of recombinant IL-10 cDNA and genomic clones, the viral homolog BCRF1 (vIL-10), and IL-10 receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse helper T cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med 1989; 170: 2081–95.

    Article  PubMed  CAS  Google Scholar 

  2. Moore KW, Vieira P, Fiorentino DF et al. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein Barr Virus gene BCRFI. Science 1990; 248: 1230–34.

    Article  PubMed  CAS  Google Scholar 

  3. Vieira P, de Waal-Malefyt R, Dang M-N et al. Isolation and expression of human cytokine synthesis inhibitory factor (CSIF/ IL10) cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA 1991; 88: 1172–76.

    Article  PubMed  CAS  Google Scholar 

  4. Moore KW, O’Garra A, de Waal Malefyt R et al. Interleukin-10. Ann Rev Immunol 1993; 11: 165–90.

    Article  CAS  Google Scholar 

  5. Ho AS-Y, Moore KW. Interleukin-10 and its receptor. Therapeutic Immunology 1994; in press.

    Google Scholar 

  6. Hsu D-H, de Waal Malefyt R, Fiorentino DF et al. Expression of IL-10 activity by Epstein-Barr Virus Protein BCRFI. Science 1990; 250: 830–32.

    Article  PubMed  CAS  Google Scholar 

  7. Goodman RE, Oblak J, Bell RG. Synthesis and characterization of rat interleukin-10 (IL-10) cDNA clones from the RNA of cultured OX8- OX22- thoracic duct T cells. Biochem Biophys Res Commun 1992; 189: 1–7.

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y, Wei SH-Y, Ho AS-Y et al. Expression cloning and characterization of a human interleukin-10 receptor. J Immunol 1994; 152: 1821–29.

    PubMed  CAS  Google Scholar 

  9. Mosmann TR, Schumacher J, Fiorentino DF et al. Isolation of monoclonal antibodies specific for IL4, ILS, IL6, and a new Th2specific cytokine (IL-10), cytokine synthesis inhibitory factor, by using a solid phase radioimmunoadsorbent assay. J Immunol 1990; 145: 2938–45.

    PubMed  CAS  Google Scholar 

  10. Tan JC, Indelicato S, Narula SK et al. Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem 1993; 268: 21053–59.

    PubMed  CAS  Google Scholar 

  11. Windsor WT, Syto R, Tsarbopoulos A et al. Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10. Biochemistry 1993; 32: 8807–15.

    Article  PubMed  CAS  Google Scholar 

  12. Shanafelt AB, Miyajima A, Kitamura T et al. The amino-terminal helix of GM-CSF and IL-5 governs high-affinity binding to their receptors. EMBO J 1991; 10: 4105–12.

    CAS  Google Scholar 

  13. Ho AS-Y, Liu Y, Khan TA et al. A receptor for interleukin-10 is related to interferon receptors. Proc Natl Acad Sci USA 1993; 90: 11267–71.

    Article  PubMed  CAS  Google Scholar 

  14. Kim JM, Brannan CI, Copeland NG et al. Structure of the mouse interleukin-10 gene and chromosomal localization of the mouse and human genes. J Immunol 1992; 148: 3618–23.

    PubMed  CAS  Google Scholar 

  15. Tanabe 0, Akira S, Kamiya T et al. Genomic structure of the murine IL-6 gene: high degree of conservation of potential regulatory sequences between mouse and human. J Immunol 1988; 141: 3875–81.

    PubMed  CAS  Google Scholar 

  16. Hisatsune T, Minai Y, Nishisima K-I et al. A suppressive lymphokine derived from Ts clone 13G2 is IL-10. Lymphokine Cytokine Res 1992; 11: 87–93.

    PubMed  CAS  Google Scholar 

  17. O’Garra A, Stapleton G, Dhar V et al. Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int Immunol 1990; 2: 821–32.

    Article  PubMed  Google Scholar 

  18. O’Garra A, Chang R, Go N et al. Ly-1 B (B-1) cells are the main source of B-cellderived IL-10. Eur J Immunol 1992; 22: 71 1717.

    Google Scholar 

  19. MacNeil I, Suda T, Moore KW et al. IL-10: a novel cytokine growth cofactor for mature and immature T cells. J Immunol 1990; 145: 4167–73.

    PubMed  CAS  Google Scholar 

  20. Fiorentino DF, Zlotnik A, Mosmann TR et al. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–22.

    PubMed  CAS  Google Scholar 

  21. Lin TZ, Svetic A, Ganea D et al. Cytokines in NZB CDS+ B clones. Annals NY Acad Sci 1992; 651: 581–83.

    Article  CAS  Google Scholar 

  22. Enk AH, Katz SI. Identification and induction of keratinocyte-derived IL-10. J Immunol 1992; 149: 92–5.

    PubMed  CAS  Google Scholar 

  23. Yssel H, de Waal Malefyt R, Roncarolo MG et al. Interleukin 10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J Immunol 1992; 149: 2378–84.

    PubMed  CAS  Google Scholar 

  24. de Waal Malefyt R, Abrams J, Bennett B et al. IL-10 inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991; 174: 1209–20.

    Article  Google Scholar 

  25. Salgame P, Abrams JS, Clayberger C et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 1991; 254: 279–82.

    Article  PubMed  CAS  Google Scholar 

  26. Yamamura M, Uyemura K, Deans RJ et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1991; 254: 277–79.

    Article  PubMed  CAS  Google Scholar 

  27. Benjamin D, Knoblach TJ, Dayton MA. Human B-cell interleukin 10: B cell lines derived from patients with AIDS and Burkitt’s lymphoma constitutively secrete large quantities of interleukin 10. Blood 1992; 80: 1289–98.

    PubMed  CAS  Google Scholar 

  28. Burdin N, Peronne C, Banchereau J et al. Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin10. J Exp Med 1993; 177: 295–304.

    Article  PubMed  CAS  Google Scholar 

  29. Miyazaki I, Cheung RK, Dosch H-M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med 1993; 178: 439–47.

    Article  PubMed  CAS  Google Scholar 

  30. Durez P, Abramowicz D, Gerard C et al. In vivo induction of interleukin-10 by anti-CD3 monoclonal antibody or bacterial lipopolysaccharide: differential modulation by cyclosporin A. J Exp Med 1993; 177: 551–55.

    Article  PubMed  CAS  Google Scholar 

  31. Wang SC, Zeevi A, Jordan ML et al. FK506, rapamycin, and cyclosporine: effects on IL-4 and IL-10 mRNA levels in a T-helper 2 cell line. Transplant Proc 1991; 23: 2920–22.

    PubMed  CAS  Google Scholar 

  32. Rode H-J, Janssen W, Rosen-Wolff A et al. The genome of equine herpesvirus type 2 harbors an interleukin-10 (IL-10)-like gene. Virus Genes 1993; 7: 111–16.

    Article  PubMed  CAS  Google Scholar 

  33. Moore KW, Rousset F, Banchereau J. Evolving principles in immunopathology: interleukin 10 and its relationship to Epstein-Barr virus protein BCRF1. Springer Semin Immunopathol 1991; 13: 157–66.

    Article  PubMed  CAS  Google Scholar 

  34. Hsu D-H, Moore KW, Spits H. Differential effects of interleukin-4 and -10 on interleukin-2-induced interferon-y synthesis and lymphokine-activated killer activity. Int Immunol 1992; 4: 563–69.

    Article  PubMed  CAS  Google Scholar 

  35. de Waal Malefyt R, Haanen J, Spits H et al. IL-10 and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II MHC expression. J Exp Med 1991; 174: 915–24.

    Article  Google Scholar 

  36. Tripp CS, Wolf SE, Unanue ER. Interleukin 12 and tumor necrosis factor a are costimulators of interferon y production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci USA 1993; 90: 3725–29.

    Article  PubMed  CAS  Google Scholar 

  37. Niiro H, Otsuka T, Abe M et al. Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res 1992; 11: 209–14.

    PubMed  CAS  Google Scholar 

  38. Rousset F, Garcia E, Defrance T et al. IL-10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA 1992; 89: 1890–93.

    Article  PubMed  CAS  Google Scholar 

  39. Defrance T, Vanbervliet B, Briere F et al. Interleukin 10 and transforming growth factor ß cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J Exp Med 1992; 175: 671–82.

    Article  PubMed  CAS  Google Scholar 

  40. Go NF, Castle BE, Barrett R et al. Interleukin 10 (IL-10), a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 1990; 172: 1625–31.

    Article  PubMed  CAS  Google Scholar 

  41. Stewart JP, Rooney CM. The interleukin10 homolog encoded by Epstein-Barr Virus enhances the reactivation of virus-specific cytotoxic T cell and HLA-unrestricted killer responses. Virology 1992; 191: 73–82.

    Google Scholar 

  42. Chen W-F, Zlotnik A. Interleukin 10: A novel cytotoxic T cell differentiation factor. J Immunol 1991; 147: 528–34.

    PubMed  CAS  Google Scholar 

  43. Hudson GS, Bankier AT, Satchwell SC et al. The short unique region of the B95–8 Epstein-Barr virus genome. Virology 1985; 147: 81–8.

    Article  PubMed  CAS  Google Scholar 

  44. Swaminathan S, Hesselton R, Sullivan J et al. Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J Virol 1993; 67: 7406–13.

    PubMed  CAS  Google Scholar 

  45. Thorley-Lawson DA. Immunological responses to Epstein-Barr virus infection and the pathogenesis of EBV-induced diseases. Biochim Biophys Acta 1988; 948: 263–86.

    CAS  Google Scholar 

  46. Tosato G. The Epstein-Barr virus and the immune system. Adv Cancer Res 1987; 49: 75–125.

    Article  PubMed  CAS  Google Scholar 

  47. Hopp TP, Prickett KS, Price VL et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 1988; 6: 1204–10.

    Article  CAS  Google Scholar 

  48. Sakamaki K, Miyajima I, Kitamura T et al. Critical cytoplasmic domains of the common f3 subunit of the human GM-CSF, IL-3, and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J 1992; 11: 3541–49.

    CAS  Google Scholar 

  49. Sato N, Sakamaki K, Terada N et al. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common ß subunit responsible for different signaling. The EMBO J 1993; 12: 4181–89.

    CAS  Google Scholar 

  50. Fukunaga R, Ishizaka-Ikeda E, Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor. Cell 1993; 74: 1079–87.

    Article  PubMed  CAS  Google Scholar 

  51. Waal Malefyt R, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. J Immunol 1993; 150: 4754–65.

    Google Scholar 

  52. Taga K, Mostowski H, Tosato G. Human interleukin-10 can directly inhibit T-cell growth. Blood 1993; 81: 2964–71.

    PubMed  CAS  Google Scholar 

  53. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 1990; 87: 6934–38.

    Article  PubMed  CAS  Google Scholar 

  54. Chomarat P, Rissoan M-C, Banchereau J et al. Interferon gamma inhibits interleukin 10 production by monocytes. J Exp Med 1993; 177: 523–27.

    Article  PubMed  CAS  Google Scholar 

  55. to Velde AA, de Waal Malefyt R, Huijbens RJF et al. IL-10 stimulates monocyte FcgR surface expression and cytotoxic activity: distinct regulation of ADCC by IFNy, IL-4, and IL-10. J Immunol 1992; 149: 4048–52.

    Google Scholar 

  56. Aguet M, Dembic Z, Merlin G. Molecular cloning and expression of the human interferon-y receptor. Cell 1988; 55: 273–80.

    Article  PubMed  CAS  Google Scholar 

  57. Uze G, Lutfalla G, Gresser I. Genetic transfer of a functional human interferon-a receptor into mouse cells: cloning and expression of its cDNA. Cell 1990; 60: 225–34.

    Article  PubMed  CAS  Google Scholar 

  58. Bazan JF. Shared architecture of hormone binding domains in type I and II interferon receptors. Cell 1990; 61: 753–54.

    Article  PubMed  CAS  Google Scholar 

  59. Pestka S. The interferon receptors: an unfinished story. AIDS Res Hum Retroviruses 1992; 8: 776–86.

    PubMed  CAS  Google Scholar 

  60. Soh J, Donnelly RJ, Kotenko S et al. Identification and sequence of an accessory fac- tor required for activation of the human interferon gamma receptor. Cell 1994; 76: 793–802.

    Article  PubMed  CAS  Google Scholar 

  61. Hemmi S, Bohni R, Stark G et al. A novel member of the interferon receptor family complements functionality of the murine interferon-gamma receptor in human cells. Cell 1994; 76: 803–10.

    Article  PubMed  CAS  Google Scholar 

  62. Miyajima A, Hara T, Kitamura T. Common subunits of cytokine receptors and the functional redundancy of cytokines. Trends Biochem Sci 1992; 17: 378–82.

    Article  PubMed  CAS  Google Scholar 

  63. Gearing DP, Comeau MR, Friend DJ et al. The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 1992; 255: 1434–37.

    Article  PubMed  CAS  Google Scholar 

  64. Lamer AC, David M, Feldman GM et al. Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 1993; 261: 1730–33.

    Article  Google Scholar 

  65. Muller M, Briscoe J, Laxton C et al. The protein tyrosine kinase JAK1 complements defects in interferon-a/13 and -y signal transduction. Nature 1993; 366: 129–35.

    Article  PubMed  CAS  Google Scholar 

  66. Watling D, Guschin D, Muller M et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-g signal transduction pathway. Nature 1993; 366: 166–70.

    Article  PubMed  CAS  Google Scholar 

  67. Baer R, Bankier AT, Biggin MD et al. DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 1984; 310: 207–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, K.W., Ho, A.SY., Xu-Amano, J. (1995). Molecular Biology of Interleukin-10 and its Receptor. In: Interleukin-10. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22038-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22038-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22040-5

  • Online ISBN: 978-3-662-22038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics