Skip to main content

Signal Transduction Pathways Regulating Arachidonic Acid Metabolite Generation Following FcεRI Aggregation

  • Chapter
Book cover IgE Receptor (FcεRI) Function in Mast Cells and Basophils

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Aggregation of high affinity IgE receptors (FcεRI) on the surface of ast cells and basophils results in the initiation of specific signal transduction events that lead to degranulation, cytokine gene expression and the de novo synthesis and release of phospholipid-derived pro-in- flammatory mediators. The phospholipid-derived category of inflamma- tory mediators includes cyclooxygenase-derived products such as prostag- landin (PG) D2, 6-keto-PGF1α, PGE2 and thromboxane B2; and 5-lipoxygenase-derived products such as leukotriene (LT) C4, LTB4 and LTE4.1−17 Two major steps are required for the generation of these inflammatory mediators from phospholipids: (a) the liberation of substrate, i.e., arachidonic acid from phospholipids, and (b) the generation of the active metabolites from arachidonic acid (Fig. 10.1). Although it is likely that the early signal transduction events in the FcεRI-mediated production of these molecules are similar to those leading to degranulation and perhaps cytokine gene expression, there is emerging evidence indicating that there is also divergency in these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doran O, Stahl J, Cook E et al. Peptidoleukotriene (pLT) release from guinea pig lung mast cells. Inflammation 1994; 12. 18: 89–97.

    Google Scholar 

  2. Freeland HS, Schleimer RP, Schulman ES et al. Generation of leukotriene B4 by human lung fragments and purified human lung mast cells. Am Rev Respir Dis 1988; 138: 389–94.

    PubMed  CAS  Google Scholar 

  3. Jakshick BA, Reugers TA, Pinski JR. Nature of the mast cell macrophage interaction in immediate hypersensitivity. Adv Prostaglandin Thromboxane Leukotriene Res 1987; 17: 180–85.

    Google Scholar 

  4. Jakschik BA, Wei Y, Owens LF. Interaction of macrophages and mast cells in the production of prostaglandins and leukotrienes. In: Nigan S, McBrien DCH, Slater TF, eds. Eicosanoids, Lipid Peroxidation and Cancer. New York: Springer Verlag, 1988: 75–88.

    Google Scholar 

  5. Kreiger M, von Tscharner V, Dahinden CA. Signal transduction for interleukin-3 dependent leukotriene synthesis in normal human basophils: opposing role of tyrosine kinase and protein C. Eur J Immunol 1992; II: 2907–13.

    Google Scholar 

  6. Lewis RA, Austen KF. Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature 1981; 293: 103–8.

    PubMed  CAS  Google Scholar 

  7. Lewis RA, Soler NA, Diamond PT et al. Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J Immunol 1982; 129: 1627–31.

    PubMed  CAS  Google Scholar 

  8. Levi-Schaffer F, Shalit M. Differential release of histamine and prostaglandin D2 in rat peritoneal mast cells activated with peptides. Int Arch Allergy Appl Immunol 1989; 90: 352–57.

    PubMed  CAS  Google Scholar 

  9. Mencia-Huerta JM, Razin E, Ringel EW et al. Immunologic and ionophere-induced generation of leukotriene B4 from mouse bone marrow derived mast cells. J Immunol 1983; 130: 1885–90.

    PubMed  CAS  Google Scholar 

  10. Musch MW, Siegel MI. Antigenic stimulated release of arachidonic acid, lipoxygenase activity and histamine release in a cloned murine mast cell MC9. Biochem Biophys Res Commun 1985; 126: 517–25.

    PubMed  CAS  Google Scholar 

  11. Neeleman P, Turk J, Jakschik BA et al. Arachidonic acid metabolism. Annu Rev Biochem 1986; 55: 69–102.

    Google Scholar 

  12. Ramos BF, Zhang Y, Qureshi R et al. Mast cells are critical for the production of leukotrienes responsible for neutrophil recruitment in immune complex-induced peritonis in mice. J Immunol 1991; 147: 1636–41.

    PubMed  CAS  Google Scholar 

  13. Razin E, Mencia-Huerta JH, Stevens RL et al. IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, ß-hexosaminidase and histamine from cultured bone marrow derived mast cells. J Exp Med 1983; 157: 199–201.

    Google Scholar 

  14. Robinson C, Benyon RC, Holgate ST et al. The IgE- and calcium-dependent release of eicosanoids and histamine from human purified cutaneous mast cells. J Invest Dermatol 1989; 93: 397–404.

    PubMed  CAS  Google Scholar 

  15. Wells E, Harper ST, Jackson CG et al. Characterization of primate bronchoalveolar mast cells I. IgE-dependent release of histamine, leukotrienes and prostaglandins. J Immunol 1986; 137: 3933–40.

    PubMed  CAS  Google Scholar 

  16. Raible DG, Schulman ES, DiMuzio J et al. Mast cell mediators prostaglandin-D2 and histamine activate human eosinophils. J Immunol 1992; 148: 3536–42.

    PubMed  CAS  Google Scholar 

  17. Peters SP, MacGlashan DW, Schulman ES et al. Arachidonic acid metabolism in purified human lung mast cells. J Immonol 1972; 132: 1972–79.

    Google Scholar 

  18. Lewis RA, Austes KF, Sokerman RJ. Leukotrienes and other products of the 5lipoxygenase pathway. Biochemistry and relation to pathobiology in human disease. N Engl J Med 1990; 323: 645–55.

    PubMed  CAS  Google Scholar 

  19. Marone G, Columbo M, Triggiani M. et al. Inhibition of IgE-mediated release of histamine and peptide leukotriene from human basophils and mast cells by forskolin. Biochem Pharmacol 1987; 36: 13–20.

    PubMed  CAS  Google Scholar 

  20. Lin P, Wiggan GA, Gilfillan AM. Activation of phospholipase D in rat mast (RBL-2H3) cell line. A possible unifying mechanism for IgE-dependent degranulation and arachidonic acid metabolite release. J Immunol 1991; 146: 1609–16.

    PubMed  CAS  Google Scholar 

  21. Chen T, Heathers G, Hope W et al. Possible roles for protein kinase (PKC) and tyrosine kinases (PTK) in the regulation of cytosolic phospholipase A (cPLA2) activity in a rat mast (RBL) cell line. Mol Biol Cell 1994; 5: 149a

    Google Scholar 

  22. Fonteh AN, Chilton FH. Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolanine pools during mast cell activation. J Immunol 1992; 148: 1784–91.

    PubMed  CAS  Google Scholar 

  23. Garcia-Gil M, Siraganian RP. Source of the arachidonic acid released on stimulation of rat basophilic leukemia cells. J Immunol 1986; 136: 3825–28.

    PubMed  CAS  Google Scholar 

  24. Yamada K, Okano Y, Miura K et al. A major role for phospholipase A2 in antigen-induced arachidonic acid release in rat mast cells. Biochem J 1987; 247: 95–99.

    PubMed  CAS  Google Scholar 

  25. Fonteh AN, Bass DA, Marshall LA et al. Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol 1994; 152: 5438–46.

    PubMed  CAS  Google Scholar 

  26. Colard O, Bidault J, Breton M et al. Biosynthesis of platelet-activating factor in cultured mast cells. Involvement of the CoAindependent transacylase demonstrated by analysis of the molecular species of platelet-activating factor. Eur J Biochem 1993; 216: 835–40.

    PubMed  CAS  Google Scholar 

  27. Winkler JD, Chilton FH. Inhibition of coenzyme A-independent transacylase may block PAF production and arachidonate release in inflammatory cells. CoA-IT’s role in the production of PAF and the metabolism of arachidonate. DNP 1993; 6: 133–38.

    Google Scholar 

  28. Fonteh AN, Chilton FH. Mobilization of different arachidonate pools and their roles in the generation of leukotrienes and free arachidonic acid during immnuologic activation of mast cells. J Immunol 1993; 150: 563–70.

    PubMed  CAS  Google Scholar 

  29. Majerus PW. Inositol Phosphate Biochemistry. Annu Rev Biochem 1992; 61: 225–50.

    PubMed  CAS  Google Scholar 

  30. Ali H, Cunha-Melo JR, Beaven MA. Receptor-mediated release of inositol 1,4,5trisphosphate and inositol 1,4-bisphosphate in rat basophilic leukemia RBL-2H3 cells permeabilized with streptolysin O. Biochim Biophys Acta 1989; 1010: 88–99.

    PubMed  CAS  Google Scholar 

  31. Cunha-Melo JR, Dean NM, Moyer JD et al. The kinetics of phosphoinositide hydrolysis in rat basophilic leukemia (RBL-2H3) cells varies with the type of IgE receptor crosslinking agent used. J Biol Chem 1987; 262: 11455–63.

    PubMed  CAS  Google Scholar 

  32. Thomson FJ, Clark MA. Purification of a phosphatidic-acid-hydrolysing phospholipase A2 from rat brain. Biochem J 1995; 306: 305–309.

    PubMed  CAS  Google Scholar 

  33. Kennerly DA. Phosphatidylcholine is a quantitatively more important source of increased 1,2-diacylglycerol than is phosphatidylinositol in mast cells. J Immunol 1990; 144: 3912–19.

    PubMed  CAS  Google Scholar 

  34. Gruchalla RS, Dinh TT, Kennerly DA. An indirect pathway of receptor-mediated 1,2diacylglycerol formation in mast cells. I. IgE receptor-mediated activation of phospholipase D. J Immunol 1990; 144: 2334–42.

    PubMed  CAS  Google Scholar 

  35. Dennis EA. Diversity of group types, regulation and function of phospholipase A2. J Biol Chem 1994; 269: 13057–60.

    PubMed  CAS  Google Scholar 

  36. Glaser KB, Mobilio D, Chang JY. Phospholipase A2 enzymes: regulation and inhibition. TiPS 1993; 14: 92–98.

    PubMed  CAS  Google Scholar 

  37. Mayer RJ, Marshall LA. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J 1993; 7: 339–48.

    PubMed  CAS  Google Scholar 

  38. Mukherjee AB, Miele L, Pattabiraman N. Phospholipase A2 enzymes: regulation and physiological role. Biochem Pharmacol 1994; 48: 1–10.

    PubMed  CAS  Google Scholar 

  39. Nakatani Y, Hara S, Murakami M et al. Characterization of cytosolic phospholipase A2 in rat mastocytoma RBL-2H3. Biol Pharm Bull 1994; 17: 47–50.

    PubMed  CAS  Google Scholar 

  40. Murakami M, Kudo I, Inoue K. Characteristics and possible functions of mast cell phospholipases A2. In: Bazan NG, ed. Neurobiology of Essential Fatty Acids. New York: Plenum Press, 1992: 27–34.

    Google Scholar 

  41. Murakami M, Kudo I, Umeda M et al. Detection of three distinct phospholipases A2 in cultured mast cells. J Biochem 1992; 111: 175–81.

    PubMed  CAS  Google Scholar 

  42. Bellini F, Viola G, Menegus AM et al. Signalling mechanism in the lysophosphatidylserine-induced activation of mouse mast cells. Biochim Biophys Acta 1990; 1052: 216–20.

    PubMed  CAS  Google Scholar 

  43. Horigone K. Tamori-Natori Y, Inoue K et al. Metabolism of lysophosphatidylserine, a potentiation of histamine release in rat mast cells. J Biochem 1986; 100: 571–79.

    PubMed  Google Scholar 

  44. Clark JD, Milona N, Knopf JL. Purifica- 53. tion of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc Natl Acad Sci 1990; 87: 7708–12. 54.

    Google Scholar 

  45. Lin L-L, Lin AY, Knopf JL. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci 1992; 89: 6147–51.

    PubMed  CAS  Google Scholar 

  46. Lin L-L, Lin AY, DeWitt DL. Interleukin- 1 a induces the accumulation of cytosolic 55. phospholipase A2 and the release of prostaglandin E2 in human fibroblasts. J Biol Chem 1992; 267: 23451–54.

    PubMed  CAS  Google Scholar 

  47. Burghardt C, Gilfillan A, Chen T et al. 56. Membrane translocation-a rate limiting step in FceRI signalling. FASEB J 1995; 9: A781 (abstract).

    Google Scholar 

  48. Clark JD, Lin L-L, Kriz RW et al. A novel arachidonic acid-selective cytosolic PLA2 57. contains a Ca2’-dependent translocation domain with homology to PKC and GAP. Cell 1991; 65: 1043–51.

    PubMed  CAS  Google Scholar 

  49. Kramer RM. Structure, function and regulation of mammalian phospholipases A2. In: Brown BC, Dobson PRM, eds. Advances in 58. Second Messenger and Phosphoprotein Research. Vol 28. New York: Raven Press Ltd., 1993: 81–92.

    Google Scholar 

  50. Nalefski EA, Sultzman LA, Martin DM et 59. al. Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca2’-dependent lipid-binding domain and a Ca2’-independent catalytic domain. J Biol Chem 1994; 269: 18239–49.

    PubMed  CAS  Google Scholar 

  51. Muramaki M, Matsumoto R, Urade Yet al. c-Kit ligand mediates increased expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase-1 and hematopoietic prostaglandin D2 synthase and in- creased IgE-dependent prostaglandin D2 61. generation in immature mouse mast cells. J Biol Chem 1995; 270: 3239–46.

    Google Scholar 

  52. Murakami M, Penrose JF, Urade Y et al. Interleukin 4 suppresses c-kit ligand-induced expression of cytosolic phospholipase A2 and prostaglandin endoperoxide synthase2 and their roles in separate pathways of eicosanoid synthesis in mouse bone marrow-derived mast cells. Proc Natl Acad Sci 1995; 92: 6107–11.

    PubMed  CAS  Google Scholar 

  53. Nakatani Y, Murakami M, Kudo I et al. Dual regulation of cytosolic phospholipase A2 in mast cells after crosslinking of Fcereceptor. J Immunol 1994; 153: 796–803.

    PubMed  CAS  Google Scholar 

  54. Currie S, Roberts EF, Spaethe SM et al. Phosphorylation and activation of Cat+-sensitive cytosolic phospholipase A2 in MCII mast cells mediated by high-affinity Fc receptor for IgE. Biochem J 1994; 304: 923–28.

    PubMed  CAS  Google Scholar 

  55. Garcia-Gil M, Siraganian RP. Phospholipase A2 stimulation during cell secretion in rat basophilic leukemia cells. J Immunol 1986; 136: 259–63.

    PubMed  CAS  Google Scholar 

  56. Gawler DJ, Zhang L-J, Reedijk M et al. CaLB: a 43 amino acid calcium-dependent membrane/phospholipid binding domain in p120 Ras GTPase-activating protein. Oncogene 1995; 10: 817–25.

    PubMed  CAS  Google Scholar 

  57. Glover S, Bayburt T, Jonas M et al. Translocation of the 85 kDa phospholipase A2 from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J Biol Chem 1995; 270: 15359–67.

    PubMed  CAS  Google Scholar 

  58. Butcher RD, Wojcik SJ, Lints T et al. Arachidonic acid, a growth signal in murine P815 mastocytoma cells. Cancer Res 1993; 53: 3405–10.

    PubMed  CAS  Google Scholar 

  59. Murakami M, Kudo I, Inoue K. Eicosanoid generation from antigen-primed mast cells by extracellular mammalian 14 kDa group II phospholipase A2. FEBS Lett 1991; 294: 247–51.

    PubMed  CAS  Google Scholar 

  60. Murakami M, Kudo I, Suwa Y et al. Release of 14 kDa group-II phospholipase A2 from activated mast cells and its possible involvement in the granulation process. 204: 259–67.

    Google Scholar 

  61. Fonteh AN, Samet JM, Chilton FH. Regulation of arachidonic acid, eicosanoid and PLA2 levels in mutine mast cells by recombinant stem cell factor. J Clin Invest (in press).

    Google Scholar 

  62. Ishizaki J, Hanasaki K, Higashino K et al. Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem 1994; 269: 5897–904.

    PubMed  CAS  Google Scholar 

  63. Lambeau G, Ancian P, Barhanin J et al. Cloning and expression of a membrane receptor for secretory phospholipases A2. J Biol Chem 1994; 269: 1575–78.

    PubMed  CAS  Google Scholar 

  64. Ohara O, Ishizaki J, Arita H. Structure and function of phospholipase A2 receptor. Prog Lipid Res 1995; 34: 117–38.

    PubMed  CAS  Google Scholar 

  65. Ishizaki J, Kishino J, Teraoka H et al. Receptor-binding capability of pancreatic phospholipase A2 is separable from its enzymatic activity. FEBS Lett 1993; 324: 349–52.

    PubMed  CAS  Google Scholar 

  66. Murakami M, Hara N, Kudo I et al. Triggering of degranulation in mast cells by exogenous type II phospholipase A2. J Immunol 1993; 151: 5675–84.

    PubMed  CAS  Google Scholar 

  67. Murakami M, Kudo I, Fujimori Y et al. Group II phospholipase A2 inhibitors suppressed lysophosphatidylserine-dependent degranulation of rat peritoneal mast cells. Biochem Biophys Res Commun 1991; 181: 714–21.

    PubMed  CAS  Google Scholar 

  68. Chi E, Henderson WR, Klebanoff SJ. Phospholipase A2-induced rat mast cell secretion. Lab Invest 1982; 47: 579–85.

    PubMed  CAS  Google Scholar 

  69. Peters SP, Schleimer RP, Marone G et al. Lipoxygenase products of arachidonic acid; role in modulation of IgE-induced histamine release. Leukotrines and other Lipoxygenase Products 1982.

    Google Scholar 

  70. Sullivan TJ, Parker CW. Possible role of arachidonic acid and its metabolites in mediator release from rat mast cells. J Immunol 1979; 122: 431–36.

    PubMed  CAS  Google Scholar 

  71. Bronner C, Cothenet V, Monte D et al. Role of phospholipase A2 and G-proteins in the IgE-dependent activation of mast cells and macrophages. Agents and Actions 1990; 30: 95–97.

    PubMed  CAS  Google Scholar 

  72. Chand N, Pillar J, Diamantis W et al. Inhibition of histamine secretion from rat peritoneal mast cells and rabbit leukocytes by p-bromophenacyl bromide, a phospholipase A2 inhibitor. Res Comm Chem Path and Pharm 1987; 55: 17–24.

    CAS  Google Scholar 

  73. Marone G, Kagey-Sobotka A, Lichtenstein LM. Possible role of phospholipase A2 in triggering histamine secretion from human basophils in vitro. Clin Immunol Immunopathol 1981; 20: 231–39.

    PubMed  CAS  Google Scholar 

  74. Morita Y, Aida N, Miyamoto T. Role of phospholipase A2 activation in histamine release from human basophils. Allergy 1983; 38: 413–18.

    PubMed  CAS  Google Scholar 

  75. Chettibi S, Lawrence AJ, Stevenson RD et al. Effect of lysophosphatidic acid on motility, polarisation and metabolic burst of human neutrophils. FEMS Immunology and Medical Microbiology 1994; 8: 271–82.

    PubMed  CAS  Google Scholar 

  76. Durieux ME, Lynch KR. Signalling properties of lysophosphatidic acid. TiPS 1993; 14: 249–54.

    PubMed  CAS  Google Scholar 

  77. Fernandez B, Balboa MA, Solis-Herruzo JA et al. Phosphatidate-induced arachidonic acid mobilization in mouse peritoneal macrophages. J Biol Chem 1994; 269: 26711–16.

    PubMed  CAS  Google Scholar 

  78. Howe KR, Marshall CJ. Lysophosphatidic acid stimulates mitogen-activated protein kinase activation via a G-protein-coupled pathway requiring p2lras and p74raf-1 J Biol Chem 1993; 268: 20717–20.

    CAS  Google Scholar 

  79. Jones GA, Carpenter G. The regulation of phospholipase C-71 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem 1993; 268: 20845–50.

    PubMed  CAS  Google Scholar 

  80. Moolenaar WH. LPA: a novel lipid mediator with diverse biological actions. Trends In Cell Biol 1994; 4: 213–19.

    CAS  Google Scholar 

  81. Pearce B, Jakobson K, Morrow C et al. Phosphatidic acid promotes phosphoinositide metabolism and DNA synthesis in cultured cortical astrocytes. Neurochem Int 1994; 24: 165–71.

    PubMed  CAS  Google Scholar 

  82. Seufferlein T, Rozengurt E. Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin and p130. J Biol Chem 1994; 269; 9345–51.

    PubMed  CAS  Google Scholar 

  83. Lin P, Gilfillan AM. The role of calcium and potein kinase C in the IgE-dependent activation of phosphatidylcholine-specific phospholipase D in a rat mast (RBL-2H3) cell line. Eur J Biochem 1992; 207: 163–68.

    PubMed  CAS  Google Scholar 

  84. Lin P, Wiggan GA, Welton AF et al. Differential effects of propranolol on the IgEdependent, or calcium ionophore-stimulated, phosphoinositide hydrolysis and calcium mobilization in a mast (RBL-2H3) cell line. Biochem Pharmacol 1991; 41: 1941–48.

    PubMed  CAS  Google Scholar 

  85. Lin P, Fung WC, Gilfillan AM. Phosphatidylcholine-specific phospholipase D-derived 1,2-diacylglycerol does not initiate protein kinase C activation in the RBL-2H3 mast-cell line. Biochem J 1992; 287: 325–31.

    PubMed  CAS  Google Scholar 

  86. Lin P, Fung WC, Li S et al. Temporal regulation of the IgE-dependent 1,2-diacylglycerol production by tyrosine kinase activation in a rat(RBL-2H3) mast-cell line. Biochem J 1994; 299: 102–14.

    Google Scholar 

  87. Kumada T, Miyata H, Nozaway. Involvement of tyrosine phosphorylation in IgE receptor-mediated phospholipase D activation in rat basophilic leukemia (RBL-2H3) cells. Biochem Biophys Res Commun 1993; 191: 1363–68.

    PubMed  CAS  Google Scholar 

  88. Ishimoto T, Akiba S, Sato T et al. Contribution of phospholipases A2 and D to arachidonic acid liberation and prostaglandin D2 formation with increase in intracellular Cat’ concentration in rat peritoneal mast cells. Eur J Biochem 1994; 219: 401–406.

    PubMed  CAS  Google Scholar 

  89. Koike T, Mizutani T, Hirai K et al. SCF/ c-Kit receptor-mediated arachidonic acid liberation in rat mast cells. Biochem Biophys Res Commun 1993; 197: 1570–77.

    PubMed  CAS  Google Scholar 

  90. Sato T, Ishimoto T, Akiba S et al. Enhancement of phospholipase A2 activation by phosphatidic acid endogenously formed through phospholipase D action in rat peritoneal mast cell. FEBS Lett 1993; 323: 23–26.

    PubMed  CAS  Google Scholar 

  91. Dixon RAF, Diehl RE, Opas E et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 1990; 343: 282–84.

    PubMed  CAS  Google Scholar 

  92. Wong A, Cook MN, Hwang SM et al. Stimulation of leukotriene production and membrane translocation of 5-Lipoxygenase by crosslinking of the IgE receptors in RBL2H3 cells. Biochemistry 1992; 31: 4046–52.

    PubMed  CAS  Google Scholar 

  93. Malaviya R, Malaviya R, Jakschik BA. Reversible translocation of 5-lipoxygenase in mast cells upon IgE/Antigen stimulation. J Biol Chem 1993; 268: 4939–44.

    PubMed  CAS  Google Scholar 

  94. Brock TG, Paine III R, Peters-Golden M. Localization of 5-Lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem 1994; 269: 22059–66.

    PubMed  CAS  Google Scholar 

  95. Lepley RA, Fitzpatrick FA. 5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins. J Biol Chem 1994; 269: 24163–68.

    PubMed  CAS  Google Scholar 

  96. Vane J. Towards a better aspirin. Nature 367: 215–16.

    Google Scholar 

  97. Thomas PS, Wilson AN, Schreck RE et al. Prostaglandin D2 production and identification of prostaglandin H synthase within canine mast cell granule. Am J Physiol 1992; 263: L168 - L76.

    PubMed  CAS  Google Scholar 

  98. Samet JM, Fasano MB, Fonteh AN et al. Selective induction of PGH synthase I by stem cell factor and dexamethasone in mast cells. J Biol Chem 1995; 270: 8044–49.

    PubMed  CAS  Google Scholar 

  99. Murakami M, Matsumoto R, Austen KF et al. Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin D2 in mouse marrow-derived mast cells. J Biol Chem 1994; 269: 22269–75.

    PubMed  CAS  Google Scholar 

  100. Dewitt DL, Smith WL. Primary structure of prostaglandin G/H synthase for sheep vesicular gland determined from the complementary DNA sequence. Proc Natl Acad Sci 1988; 85: 1412–16.

    PubMed  CAS  Google Scholar 

  101. DeWitt DL, Harith EL, Kraemer EA et al. The aspirin and heme-binding sites or ovine and murine prostaglandin endoperoxide syntheses. J Biol Chem 1990; 265: 5192–98.

    PubMed  CAS  Google Scholar 

  102. Funk CD, Funk LB, Kennedy ME et al. Human platelet/erythroleukemic cell prostaglandin G/H synthase: cDNA cloning expression and gene chromosomal assignment. FASEB J 1991; 5: 2304–12.

    PubMed  CAS  Google Scholar 

  103. Urade Y, Fujimoto N, Hayaishi O. Purification and characterization of rat brain prostaglandin D synthetase. J Biol Chem 1985; 160: 12410–15.

    Google Scholar 

  104. Urade Y, Fujimoto N, Ujihara M et al. Primary structure of rat brain prostaglandin D synthetase deduced from cDNA sequence. J Biol Chem 1989; 264: 1041–45.

    PubMed  CAS  Google Scholar 

  105. Urade Y, Ujihara M, Horiguchi Y et al. Mast cells contain spleen-type prostaglandin D synthetase. J Biol Chem 1990; 265: 371–75.

    PubMed  CAS  Google Scholar 

  106. Murakami M, Austen KF, Arm JF. The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cystolic phospholipase A, and 5-lipoxygenase. J Exp Med 1995; 182: 197–206.

    PubMed  CAS  Google Scholar 

  107. Chock SP, Schmauder-Chock EA. A new model for the mechanism of stimulus-secretion coupling. BioFactors 1990; 2: 133–46.

    PubMed  CAS  Google Scholar 

  108. Schmauder-Chock EA, Chock SP. Localization of cyclo-oxygenase and prostaglandin E2 in the secretory granule of the mast cell. J Histochem Cytochem 1989; 37: 1319–28.

    PubMed  CAS  Google Scholar 

  109. Chock SP, Schmauder-Chock EA, CordellaMiele E et al. The localization of phospholipase A2 in the secretory granule. Biochem J 1994; 300: 619–22.

    PubMed  CAS  Google Scholar 

  110. Chock SP, Schmauder-Chock EA. Phospholipid storage in the secretory granule of the mast cell. J Biol Chem 1989; 264: 2862–68.

    PubMed  CAS  Google Scholar 

  111. Chock SP, Schmauder-Chock EA. Synthesis of prostaglandins and eicosanoids by the mast cell secretory granule. Biochem Biophys Res Commun 1988; 156: 1308–15.

    PubMed  CAS  Google Scholar 

  112. Lin L-L, Wartmann M, Lin AY et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; 72: 269–78.

    PubMed  CAS  Google Scholar 

  113. Her E, Zor U. The role of external and internal free Cat’ concentration on ionomycin induced leukotriene C4 formation in rat basophilic leukemia cells. J Lipid Mediators 1991; 4: 175–84.

    CAS  Google Scholar 

  114. Gilfillan AM, Kado-Fong H, Wiggan GA et al. Conservation of signal transduction mechanisms via the human FceRI-a after transfection into a rat mast cell line, RBL-2H3. J Immunol 1992; 149: 2445–51.

    PubMed  CAS  Google Scholar 

  115. Ali H, Collado-Escobar DM, Beaven MA. The rise in concentration of free Cat’ and of pH provides sequential synergistic signals for secretion in antigen-stimulated rat basophilic leukemia (RBL-2H3) cells. J Immunol 1989; 143: 2626–33.

    PubMed  CAS  Google Scholar 

  116. Hide M, Beaven MA. Calcium influx in a rat mast cell (RBL-2H3) line. Use of multivalent metal ions to define its characteristics and role in exocytosis. J Biol Chem 1991; 266: 15221–29.

    PubMed  CAS  Google Scholar 

  117. Narasimhan V, Holowka D, Baird B. A guanine nucleotide-binding protein participates in IgE receptor-mediated activation of endogenous and reconstituted phospholipase A2 in a permeabilized cell system. J Biol Chem 1990; 265: 1459–64.

    PubMed  CAS  Google Scholar 

  118. Okano Y, Yamada K, Yano K et al. Guanosine 5’-(y-thio) triphosphate stimulates arachidonic acid liberation in permeabilized rat peritoneal mast cells. Biochem Biophys Res Commun 1987; 145: 1267–75.

    PubMed  CAS  Google Scholar 

  119. Gilfillan AM, Wiggan GA, Welton AF. Pertussis toxin pretreatment reveals differential effects of adenosine analogs on IgEdependent histamine and peptidoleukotriene release from RBL-2H3 cells. Biochimica et Biophysica Acta 1990; 1052: 467–74.

    PubMed  CAS  Google Scholar 

  120. Nakamura T, Ui M. Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J Biol Chem 1985; 260: 3584–93.

    PubMed  CAS  Google Scholar 

  121. Hiraswa N, Santini F, Beaven MA. Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules. J Immunol 1995; 154: 5391–402.

    Google Scholar 

  122. Jiang H, Alexandropoulos K, Song J et al. Evidence that v-Src-induced phospholipase D activity is mediated by a G protein. Mol Cell Biol 1994; 14: 3676–82.

    PubMed  CAS  Google Scholar 

  123. Kusner DJ, Dubyak GR. Guanosine 5’Iythioltriphosphate induces membrane localization of cytosol-independent phospholipase D activity in a cell-free system from U937 promonocytic leucocytes. Biochem J 1994; 304: 485–91.

    PubMed  CAS  Google Scholar 

  124. Bowman EP, Uhlinger DJ, Lambeth JD. Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTPbinding protein. J Biol Chem 1993; 268: 21509–12.

    PubMed  CAS  Google Scholar 

  125. Brown HA, Gutowski S, Kahn RA et al. Partial purification and characterization of arf-sensitive phospholipase D from porcine brain. J Biol Chem 1995; 270: 14935–43.

    PubMed  CAS  Google Scholar 

  126. Brown HA, Gutowski S, Moomaw CR et al. ADP-ribosylation factor, a small GTPdependent regulatory protein, stimulates phospholipase D activity. Cell 1993; 75: 1137–44.

    PubMed  CAS  Google Scholar 

  127. Cockcroft S, Thomas GMH, Fensome A et al. Phospholipase D: a downstream effector of ARF in granulocytes. Science 1994; 263: 523–26.

    PubMed  CAS  Google Scholar 

  128. Lambeth JD, Kwak J-Y, Bowman EP et al. ADP-ribosylation factor functions synergistically with a 50 kDa cytosolic factor in cell-free activation of human neutrophil phospholipase D. J Biol Chem 1995; 270: 2431–34.

    PubMed  CAS  Google Scholar 

  129. Gilfillan AM, Wiggan GA, Welton AF. The 139. effects of the protein kinase C inhibitors staurosporine and H7 on the IgE dependent mediator release from RBL-2H3 cells. Agents and Actions 1990; 30: 418–25.

    PubMed  CAS  Google Scholar 

  130. Morita Y, Takaishi T, Honda Z et al. Role of protein kinase C in histamine release from 140. human basophils. Allergy 1988; 43: 100–4.

    PubMed  CAS  Google Scholar 

  131. Ozawa K, Szallasi Z, Kazanietz MG et al. Cat -dependent and Cat -independent isozymes of protein kinase C mediate exo- cytosis in antigen-stimulated rat basophilic 141. RBL-2H3 cells. J Biol Chem 1993; 268: 1749–56.

    PubMed  CAS  Google Scholar 

  132. Ozawa K, Yamada K, Kazanietz MG et al. Different isozymes of protein kinase C me- 142. diate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells. J Biol Chem 1993; 268: 2280–83.

    PubMed  CAS  Google Scholar 

  133. Yamada K, Jelsema CL, Beaven MA. Cer- 143. tain inhibitors of protein serine/threonine kinases also inhibit tyrosine phosphorylation of phospholipase Cyl and other proteins and reveal distinct roles for tyrosine kinase(s) and protein kinase C in stimulated, 144. rat basophilic RBL-2H3 cells. J Immunol 1992; 149: 1031–37.

    PubMed  CAS  Google Scholar 

  134. Peleg I, Ludowyke RI, Beaven MA et al. The role of myosin phosphorylation in RBL- 2H3 cell secretion. J Lab Clin Med 1992; 145. 120: 675–80.

    Google Scholar 

  135. Eiseman E, Bolen JB. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 1992; 355: 78–80. 146.

    Google Scholar 

  136. Jouvin M-HE, Adamczewski M, Numerof R et al. Differential control of the tyrosine kinases lyn and syk by two signaling chains of the high affinity immunoglobin E recep- 147. tor. J Biol Chem 1994; 269: 5918–25.

    CAS  Google Scholar 

  137. Kihara H, Siraganian RP. Src homology 2 domains of syk and lyn bind to tyrosine- phosphorylated subunits of the high affin- 148. ity IgE receptor. J Biol Chem 1994; 269: 22427–32.

    PubMed  CAS  Google Scholar 

  138. Minoguchi K, Swaim WD, Berenstein EH et al. Src family tyrosine kinase p53/561Y“, a serine kinase and FceRI associate with a- 149. galactosyl derivatives of ganglioside GD11, in rat basophilic leukemia RBL-2H3 cells. J Biol Chem 1994; 269: 5249–54.

    PubMed  CAS  Google Scholar 

  139. Wilson BS, Kapp N, Lee RJ et al. Distinct functions of the FceRI y and ß submits in the control of FceRI-mediated tyrosine kinase activation and signaling responses in RBL-2H3 mast cells. J Biol Chem 1995; 270: 4013–22.

    PubMed  CAS  Google Scholar 

  140. Yamashita T, Mao S-Y, Metzger H. Aggregation of the high-affinity IgE receptor and enhanced activity of p531561Y“ protein-tyrosine kinase. Proc Natl Acad Sci 1994; 91: 11251–55.

    PubMed  CAS  Google Scholar 

  141. Benhamou M, Ryba NJP, Kihara H et al. Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling. J Biol Chem 1993; 268: 23318–24.

    PubMed  CAS  Google Scholar 

  142. Minoguchi K, Benhamou M, Swaim WD et al. Activation of protein tyrosine kinase p7-syk by FceRI aggregation in rat basophilic leukemia cells. J Biol Chem 1994; 269: 16902–8.

    PubMed  CAS  Google Scholar 

  143. Stephan V, Benhamou M, Gutkind JS et al. FceRI-induced protein tyrosine phosphorylation of pp72 in rat basophilic leukemia cells (RBL-2H3). J Biol Chem 1992; 267: 5434–41.

    PubMed  CAS  Google Scholar 

  144. Benhamou M, Gutkind JS, Robbins KC et al. Tyrosine phosphorylation coupled to IgE receptor-mediated signal transduction and histamine release. Proc Natl Acad Sci 1990; 87: 5327–30.

    PubMed  CAS  Google Scholar 

  145. Hamawy MM, Swaim WD, Minoguchi K et al. The aggregation of the high affinity IgE receptor induces tyrosine phosphorylation of paxillin, a focal adhesion protein. J Immunol 1994; 153: 4655–62.

    PubMed  CAS  Google Scholar 

  146. Kawakami T, Inagaki N, Takei M et al. Tyrosine phosphorylation is required for mast cell activation by FceRI crosslinking. J Immunol 1992; 148; 3513–19.

    PubMed  CAS  Google Scholar 

  147. Park DJ, Min HK, Rhee SG. IgE-induced tyrosine phosphorylation of phospholipase C-yl in rat basophilic leukemia cells. J Biol Chem 1991; 266: 24237–40.

    PubMed  CAS  Google Scholar 

  148. Pribluda VS, Pribluda C, Metzger H. Transphosphorylation as the mechanism by which the high-affinity receptor /or IgE is phosphorylated upon aggregation. Proc Natl Acad Sci 1994; 91: 11246–50.

    PubMed  CAS  Google Scholar 

  149. Santini F, Beaven MA. Tyrosine phosphorylation of a mitogen-activated protein kinase-like protein occurs at a late step in exocytosis. J Biol Chem 1993; 268: 22716–22.

    PubMed  CAS  Google Scholar 

  150. Yu K-T, Lyall R, Jariwala N et al. Antigen-and ionophore-induced signal transduction in rat basophilic leukemia cells involves protein tyrosine phosphorylation. J Biol Chem 1991; 266: 22564–68.

    PubMed  CAS  Google Scholar 

  151. Balboa MA, Firestein BL, Godson C et al. Protein kinase Ca mediates phospholipase D activation by nucleotides and phorbol ester in madin-darby canine kidney cells. J Biol Chem 1994; 269: 10511–16.

    PubMed  CAS  Google Scholar 

  152. Gustaysson L, Moehren G, Torres-Marquez ME et al. The role of cytosolic Cat, protein kinase C and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J Biol Chem 1994; 269: 849–59.

    Google Scholar 

  153. Hoek JB. Tyrosine kinase activation and signal transduction mediated by phospholipase D. Lab Invest 1993; 69: 1–4.

    PubMed  CAS  Google Scholar 

  154. Song J, Foster DA. v-Src activates a unique phospholipase D activity that can be distinguished from the phospholipase D activity activated by phorbol esters. Biochem J 1993; 294: 711–17.

    PubMed  CAS  Google Scholar 

  155. Uings IJ, Thompson NT, Randall RW et al. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutro-phil. Biochem J 1992; 281: 597–600.

    PubMed  CAS  Google Scholar 

  156. Jacobsen S, Hansen HS, Jensen B. Synergism beween thapsigargin and the phorbol ester 12–0-tetradecancyl phorbol -13-acetate on the release of [14C] arachidonic acid and histamine from rat peritoneal mast cells. Biochem Pharmacol 1987; 36: 621–26.

    PubMed  CAS  Google Scholar 

  157. Amon U, von Stebut E, von Gizycki et al. Histamine release and mast cells. Control function of protein kinase C isozymes on leukotriene generation from human basophils. Agents Actions 1994; 41: C9 - C10.

    PubMed  CAS  Google Scholar 

  158. Undem BJ, Torphy TJ, Goldman D et al. Inhibition by adenosine 3’:5’-monophosphate of eicosanoid and platelet-activating factor biosynthesis in the mouse PT-18 mast cell. J Biol Chem 1990; 265: 6750–58.

    PubMed  CAS  Google Scholar 

  159. Peachell PT, MacGlashan DW Jr, Lichtenstein LM et al. Isoproterenol induced inhibition of immunoglogbin E mediated release of histamine and arachidonic acid metablilites from the human lung mast cell. J Immunol 1988; 140: 571–79.

    CAS  Google Scholar 

  160. Undem BJ, Peachell PT, Lichtenstein LM. Regulation of human basophil and lung mast cell function by cyclic adenosine mono-phosphate. J Pharmacol Exp Ther 1988; 247: 209–17.

    PubMed  CAS  Google Scholar 

  161. Hagmann W. Cell proliferation status, cytokine action and protein tyrosine phosphorylation modulate leukotriene biosynthesis in a basophil leukaemia and a mastocytoma cell line. Biochem J 1994; 299: 467–72.

    PubMed  CAS  Google Scholar 

  162. Hirasawa N, Scharenberg A, Yamamura H et al. A requirement for Syk in the activation of the microtubule-associated protein kinase/phospholipase A2 pathway by FccRl is not shared by a G protein-coupled receptor. J Biol Chem 1995; 270: 10960–67.

    PubMed  CAS  Google Scholar 

  163. Katzav S, Sutherland M, Packham G et al. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of protovay. J Biol Chem 1994; 269: 32579–85.

    PubMed  CAS  Google Scholar 

  164. Ye Z-S, Baltimore D. Binding of Vav to Grb2 through dimerization of Src homology 3 domains. Proc Natl Acad Sci 1994; 91: 12629–33.

    PubMed  CAS  Google Scholar 

  165. Margolis B. The GRB family of SH2 domain proteins. Prog Biophys molec Biol 1994; 62: 223–24.

    CAS  Google Scholar 

  166. Buday L, Egan SE, Viciana PR et al. A complex of Grb2 adaptor protein, Sos exchange factor and a 36 kDa membrane-bound tyrosine phosphoprotein is implicated in Ras activation in T cells. J Biol Chem 1994; 269: 9019–23.

    PubMed  CAS  Google Scholar 

  167. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9: 726–35.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilfillan, A.M. (1997). Signal Transduction Pathways Regulating Arachidonic Acid Metabolite Generation Following FcεRI Aggregation. In: IgE Receptor (FcεRI) Function in Mast Cells and Basophils. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22022-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22022-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22024-5

  • Online ISBN: 978-3-662-22022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics