Skip to main content

Less Common O-Linked Carbohydrates of Glycoproteins

  • Chapter
  • 103 Accesses

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

O-linked GlcNAc β-linked to Ser/Thr, where GlcNAc remains unsubstituted, is found in a number of cytoplasmic, nuclear and nuclear envelope proteins in pecies from yeast to man, including transcription factors, crystallins, kinases and viral glycoproteins. These O-GlcNAc residues have been detected by using O-GlcNAc containing glycoproteins as a substrate for bovine milk β4-Gal-transferase with subsequent release of Galβ1-4G1cNAc-OH by beta-elimination. The functions of O-G1cNAc have been suggested to be assembly and maintenance of protein complexes, regulation of protein synthesis and control of protein phosphorylation.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hayes BK, Hart GW. Novel forms of protein glycosylation. Curr Opin Struc Biol 1994; 4: 692–696.

    Article  CAS  Google Scholar 

  2. Haltiwanger RS, Blomberg MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. J Biol Chem 1992; 267: 9005–9013.

    PubMed  CAS  Google Scholar 

  3. Dong LYD, Hart GW. Purification and characterization of an 0-G1cNAc selective Nacetylglucosaminidase from rat spleen cytosol. J Biol Chem 1994; 269: 19321–19330.

    PubMed  CAS  Google Scholar 

  4. Hart GW, Greis KD, Dong LY et al. 0-linked N-acetylglucosamine: the yin-yang of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol 1995; 376:115–123.

    Google Scholar 

  5. Strahl-Bolsinger S, Tanner W. Protein 0- glycosylationin Saccharomyces cerevisiae. Purification and characterization of the dolichyl-phosphate-D-mannose-protein OD-mannosyltransferase. Eur J Biochem 1991; 196: 185–190.

    Article  Google Scholar 

  6. Gentzsch M, Strahl-Bolsinger S, Tanner W. A new Dol-P-Man:protein 0-D-mannosyltransferase activity from Saccharomyces cerevisiae. Glycobiol 1995; 5: 77–82.

    Article  CAS  Google Scholar 

  7. Marchase RB, Bounelis P, Brumley LM et al. Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase. J Biol Chem 1993; 268: 8341–8349.

    PubMed  CAS  Google Scholar 

  8. Veyna NA, Jay JC, Srisomsap C et al. The addition of glucose-1-phosphate to the cytoplasmic glycoprotein phosphoglucomutase is modulated by intracellular calcium in PC 12 cells and rat cortical synaptosomes. J Neurochem 1994; 62: 456–464.

    Article  PubMed  CAS  Google Scholar 

  9. Srisomsap C, Richardson KL, Jay JC et al. An a-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol. J Biol Chem 1989; 264: 20540–20546.

    PubMed  CAS  Google Scholar 

  10. Krusius T, Reinhold V, Margolis RK et al. Structural studies on sialylated and sulphated 0-glycosidic mannose-linked oligosaccharides in the chondroitin sulphate proteoglycan of brain. Biochem J 1987; 245: 229–234.

    PubMed  CAS  Google Scholar 

  11. Harris RJ, Spellman MW. 0-linked fucose and other posttranslational modifications unique to EGF modules. Glycobiology 1993; 3: 219–224.

    Article  PubMed  CAS  Google Scholar 

  12. Bergwerff AA, van Oostrum J, Asselbergs FAM et al. Primary structure of N-linked carbohydrate chains of a human chimeric plasminogen activator K2tuPA expressed in Chinese Hamster Ovary cells. Eur J Biochem 1993; 212: 639–656

    Article  PubMed  CAS  Google Scholar 

  13. Hajjar K, Reynolds C. a-Fucose mediated binding and degradation of tissue type plasminogen activator by HepG2 cells. J Clin Invest 1994; 93: 703–710.

    Article  PubMed  CAS  Google Scholar 

  14. Nishimura H, Takao T, Hase S et al. Human factor X has a tetrasaccharide O-glycosidically linked to Serine 61 through the fucose residue. J Biol Chem 1992; 267: 17520–17525.

    PubMed  CAS  Google Scholar 

  15. Bjoern S, Foster DC, Thim L et al. Human plasma and recombinant factor VII. Characterization of 0-glycosylations at serine residues 52 and 60 and effects of site-directed mutagenesis of serine 52 to alanine. J Biol Chem 1991; 266: 11051–11057.

    PubMed  CAS  Google Scholar 

  16. Bergwerff AA, Thomas-Oates JE, van Oostrum J et al. Human urokinase contains GaINAcII(1–4) [Fuca(1–3)) G1cNAc[3(1–2) as a novel terminal element in N-linked carbohydrate chains. FEBS Lett 1992; 314: 389–394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Less Common O-Linked Carbohydrates of Glycoproteins. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics