Skip to main content

Growth- and Hormone-Related Functions of Glycoproteins and Cell Surface Receptors

  • Chapter
Glycoproteins and Human Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 105 Accesses

Abstract

Development assures cellular diversity and continuation of life from one generation to the next. This is accomplished by differentiation into specialized cell types via asymmetric cell cycle events. For example, α2-Fuc-transferase, blood group B α3-Gal-transferase and blood group A α3-GalNAc-transferase do not appear active on human ova and sperm judged by the absence of ABO blood group reactivity; however, their products appear in early embryogenesis when differentiated epithelium can be demonstrated.1,2 In self-renewing epithelium, alterations in glycoconjugates and glycosyltransferase levels occur as cell cycle-related events.3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes RC. Membrane Glycoproteins. London: Butterworth & Son, 1976: 119.

    Google Scholar 

  2. Vedtofte P, Dabelsteen E, Hakomori S et al. Changes in the expression of blood-group carbohydrates during oral mucosal development in human fetuses. Differentiation 1984; 27: 221–228.

    Article  PubMed  CAS  Google Scholar 

  3. Kuhns W, Pann C. Differentiation of HeLa cells with respect to blood group H antigen. Nature New Biology 1972; 96: 22–24.

    Google Scholar 

  4. Aoi Y. Biosynthesis of glycoprotein-glycosyl transferases during the cell cycle. J Exp Med 1978; 124: 139–144.

    CAS  Google Scholar 

  5. Bry L, Falk PG, Gordon JI. Genetic engineering of carbohydrate biosynthetic pathways in transgenic mice demonstrates cell cycle-associated regulation of glycoconjugate production in small intestinal epithelial cells. Proc Natl Acad Sci USA 1996; 93: 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  6. Hakomori S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids:overviews and perspectives. Cancer Res 1985; 45: 2405–2414.

    PubMed  CAS  Google Scholar 

  7. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 1985; 314: 15–17.

    Google Scholar 

  8. Kato S, Akamatsu N. Alterations in fucosyl oligosaccharides of glycoproteins during rat liver regeneration. Biochem J 1985; 229: 521–528.

    PubMed  CAS  Google Scholar 

  9. Hahn T, Goochee C. Growth-associated glycosylation of transferrin secreted by HepG2 cells. J Biol Chem 1992; 267: 23982–23987.

    PubMed  CAS  Google Scholar 

  10. Feizi T. Antigenicity of mucins–their relevance to tumour associated and stage specific embryonic antigens. In:Chantler EN, Elder JB, Elstein M eds. Mucus in Health and Disease–II. New York: Plenum Press 1982: 29–39.

    Google Scholar 

  11. Gold P, Freedman S. Specific carcinoembryonic antigens of the digestive system. J Exp Med 1965; 122: 467–480.

    Article  PubMed  CAS  Google Scholar 

  12. De Lisle R, Isom K. Expression of sulfated gp300 and changes in glycosylation during pancreatic development. J Histochem Cytochem 1996; 44: 57–66.

    Article  PubMed  Google Scholar 

  13. Welply J, Lau J, Lennarz W. Developmental regulation of glycosyltransferases involved in synthesis of N-linked glycoproteins in sea urchin embryos. Develop Biol 1985; 107: 252–258.

    Article  PubMed  CAS  Google Scholar 

  14. Codogno P, Bernard B, Font J et al. Changes in protein glycosylation during chick embryo development. Biochim Biophys Acta 1983; 763: 265–275.

    Article  PubMed  CAS  Google Scholar 

  15. Berjonneau C, Aubery M, Vernay M et al. Correlation between changes in cell adhesion and the ratio of N- to 0-linked glycopeptides during chick embryo development. Biol Cell 1984; 52: 21–26.

    Article  PubMed  CAS  Google Scholar 

  16. Metzler M, Gertz A, Sarkar M et al. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantantion development. EMBO J 1994; 13: 2056–2065.

    PubMed  CAS  Google Scholar 

  17. Granovsky M, Fode C, Warren CE et al. G1cNAc-transferase V and core 2 G1cNActransferase expression in the developing mouse embryo. Glycobiol 1995; 5: 797–806.

    Article  CAS  Google Scholar 

  18. Itai S, Nishikata J, Takahashi N et al. Differentiation-dependent expression of I and sialyl I antigens in the developing lung of human embryos and in lung cancers. Cancer Res 1990; 50: 7603–7611.

    PubMed  CAS  Google Scholar 

  19. Chu S, Walker W. Developmental changes in the activities of sialyl-and fucosyltransferases in rat small intestine. Biochim Biophys Acta 1986; 883: 496–500.

    Article  PubMed  CAS  Google Scholar 

  20. Kato S, Oda-Tamai S, Akamatsu N. Post natal changes in N-linked oligosaccharides of glycoproteins in rat liver. Biochem J 1988; 253: 59–66.

    PubMed  CAS  Google Scholar 

  21. Taatjes D, Roth J. Selective loss of sialic acid from rat small intestinal epithelial cells during post-natal development. Eur J Cell Biol 1990; 53: 255–266.

    PubMed  CAS  Google Scholar 

  22. Vertino-Bell A, Ren J, Black J et al. Developmental regulation of ß-galactoside a2–6 sialyltransferase in small intestine epithelium. Develop Biol 1994; 165: 126–136.

    Article  PubMed  CAS  Google Scholar 

  23. Dall’Olio F, Malagolini N, Di Stefano G et al. Postnatal development of rat colon epithelial cells is associated with changes in the expression of the 131–4 N-acetyl- galactosaminyltransferase involved in the synthesis of Sda antigen and of a2–6 sialyltransferase activity towards Nacetyllartosamine. Biochem J 1990; 270: 519–524.

    PubMed  Google Scholar 

  24. Shah S, Lance P, Smith T et al. n-Butyrate reduces the expression of ß-galactoside a26-sialyltransferase in HepG2 cells. J Biol Chem 1992; 267: 10652–10658.

    PubMed  CAS  Google Scholar 

  25. Denis E, Codogno P, Chantret I et al. The processing of asparagine linked oligosaccharides in HT-29 cells is a function of their state of enterocytic differentiation. J Biol Chem 1988; 263: 6031–6037.

    Google Scholar 

  26. Youakim A, Romero P, Yee K et al. Decrease in polylactosaminoglycans associated with lysosomal membrane glycoproteins during differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1989; 49: 6889–6895.

    PubMed  CAS  Google Scholar 

  27. Brockhausen I, Romero PA, Herscovics A. Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1991; 51: 3136–3142.

    PubMed  CAS  Google Scholar 

  28. Piller F, Piller V, Fox R et al. Human T lymphocyte activation is associated with changes in 0-glycan biosynthesis. J Biol Chem 1988; 263: 15146–15150.

    PubMed  CAS  Google Scholar 

  29. Higgins E, Siminovitch K, Zhuang D et al. Aberrant 0-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syn- drome. J Biol Chem 1991; 266: 6280–6290.

    PubMed  CAS  Google Scholar 

  30. Saitoh O, Piller F, Fox R et al. T-lymphocytic leukemia expresses complex, branched 0-linked oligosaccharides on a major sialoglycoprotein, leukosialin. Blood 1991; 77: 1491–1499.

    PubMed  CAS  Google Scholar 

  31. Brockhausen I, Kuhns W, Schachter H et al. Biosynthesis of 0-glycans in leukocytes from normal donors and from patients with leukemia:increase in 0-glycan core 2 UDPGIcNAc:Galß1–3GalNAca-R (G1cNAc to Ga1NAc) 3(1–6)-N-acetylglucosaminyltransferase in leukemic cells. Cancer Res 1991; 51: 1257–1263.

    PubMed  CAS  Google Scholar 

  32. Koenderman A, Wijermans P, van den Eijnden D. Changes in the expression of Nacetylglucosaminyltransferase III, IV, V associated with the differentiation of HL60 cells. FEBS Lett 1987; 222: 42–46.

    Article  PubMed  CAS  Google Scholar 

  33. Lee N, Wang W, Fukuda M. Granulocytic differentiation of HL60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins. J Biol Chem 1990; 265: 20476–20487.

    PubMed  CAS  Google Scholar 

  34. Heffernan, M, Lotan R, Amos B et al. Branding 31–6-N-acetylglucosamine transferases and polylactosamine expression in mouse F9 terabocarcinoma cells and differentiated counterparts. J Biol Chem 1993; 268: 1242–1251.

    PubMed  CAS  Google Scholar 

  35. Pili R, Chang J, Partis RA et al. The aglucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res 1995; 55: 2920–2926.

    PubMed  CAS  Google Scholar 

  36. Masibay A, Damewood G, Boeggeman E et al. Expression of 31–4 galactosyltransferase gene during 3T3 cell growth. Biochim Biophys Acta 1991; 1090: 230–234.

    Article  PubMed  CAS  Google Scholar 

  37. Hinton D, Evans S, Shur B. Altering the expression of cell surface 31–4 galactosyltransferase modulates cell growth. Exper Cell Res 1995; 219: 640–649.

    Article  CAS  Google Scholar 

  38. Begovac PC, Shi YX, Mansfield D et al. Evidence that cell surface 31,4-galactosyltransferase spontaneously galactosylates an underlying laminin substrate during fibroblast migration. J Biol Chem 1994; 269: 31793–31799.

    PubMed  CAS  Google Scholar 

  39. Sanford G, Harris-Hooker S. Stimulation of vascular cell proliferation by 3-galactoside specific lectins. FASEB J 1990; 4: 2912–2918.

    PubMed  CAS  Google Scholar 

  40. Augustin HG, Kozian DH, Johnson RC. Differentiation of endothelial cells:Analysis of the constitutive and activated endothelial cell phenotypes. BioEssays 1994; 16: 901–906.

    Article  PubMed  CAS  Google Scholar 

  41. Augustin-Voss HG, Pauli BU. Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins. J Cell Biology 1992; 119: 483–491.

    Article  CAS  Google Scholar 

  42. Miyake M, Hakomori S. A specific cell surface glycoconjugate controlling cell motility:evidence by functional monoclonal antobodies that inhibit cell motility and tumor cell metastasis. Biochemistry 1991; 30: 3328–3334.

    Article  PubMed  CAS  Google Scholar 

  43. Halicka HD, Ardelt B, Li X et al. 2-deoxyD-glucose enhances sensitivity of human histiocytic lymphoma U937 cells to apoptosis induced by tumor necrosis factor. Cancer Res 1995; 55: 444–449.

    PubMed  CAS  Google Scholar 

  44. Pérez-Sala D, Mollideno F. Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic HL60 cells. J Cell Physiol 1995; 163: 523–531.

    Article  PubMed  Google Scholar 

  45. Hiraishi K, Suzuki K, Hakomori S et al. Le antigen expression is correlated with apoptosis (programmed cell death). Glycobiology 1993; 3: 381–390.

    Article  PubMed  CAS  Google Scholar 

  46. Minamide S, Naora H, Adachi M et al. Apoptosis as a mechanism of skin renewal: LeY-antigen expression is involved in an early event of a cell’s commitment to apoptosis. Histochem 1995; 103: 339–343.

    Article  CAS  Google Scholar 

  47. Perillo NL, Pace KE, Seilhamer JJ et al. Apoptosis of T cells mediated by galectin1. Nature 1995; 378: 736–739.

    Article  PubMed  CAS  Google Scholar 

  48. Rademacher T, Parekh R, Dwek R. Glycobiology. Ann Rev Biochem 1988; 57: 792–794.

    Article  Google Scholar 

  49. Kobata A. Structural function and transformational changes of the sugar chains of glycohormones. J Cell Biochem 1988; 37: 79–90.

    Article  PubMed  CAS  Google Scholar 

  50. Yamaguchi K, Akai K, Kawanishi G et al. Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties. J Biol Chem 1991; 266: 20434–20439.

    PubMed  CAS  Google Scholar 

  51. Fibi M, Hermentin P, Pauly J et al. N- and 0-Glycosylation muteins of recombinant human erythropoietin secreted from BHK21 cells. Blood 1995; 85: 1229–1236.

    PubMed  CAS  Google Scholar 

  52. Delorme E, Lorenzini T, Giffin J et al. Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 1992; 31: 9871–98776.

    Article  PubMed  CAS  Google Scholar 

  53. Higuchi M, Oh-eda M, Kuboniwa H et al. Role of sugar chains in the expression of the biological activity of human erythropoietin. J Biol Chem 1992; 267: 7703–7709.

    PubMed  CAS  Google Scholar 

  54. Wasley L, Timony G, Murtha P et al. The importance of N- and 0-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 1991; 77: 2624–2632.

    PubMed  CAS  Google Scholar 

  55. Takeuchi M, Inoue N, Strickland T et al. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese Hamster Ovary cells. Proc Natl Acad Sci USA 1989; 86: 7819–7822.

    Article  PubMed  CAS  Google Scholar 

  56. Misaizu T, Matsuki S, Strickland TW et al. Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 1995; 86: 4097–4104.

    PubMed  CAS  Google Scholar 

  57. Grossmann M, Szkudlinski MW, Tropea JE et al. Expression of human thyrotropin in cell lines with different glycosylation patterns combined with mutagenesis of specific glycosylation sites. Characterization of a novel role for the oligosaccharides in the in vitro and in vivo bioactivity. J Biol Chem 1995; 270: 29378–29385.

    Article  PubMed  CAS  Google Scholar 

  58. Fares FA, Gruener N, Kraiem Z. The role of the asparagine-linked oligosaccharides of the a-subunit in human thyrotropin bioactivity. Endocrinology 1996; 137: 555–560.

    Article  PubMed  CAS  Google Scholar 

  59. Weintraub B, Stannard B, Meyers L. Glycosylation of thyroid-stimulating hormone in pituitary tumor cells:influence of highmannose oligosacccharide units on subunit aggregation, combination and degradation. Endocrinology 1983; 112: 1331–1345.

    Article  PubMed  CAS  Google Scholar 

  60. Joshi L, Weintraub B. Naturally occurring forms of thyrotropin with low bioactivity and altered carbohydrate content act as competetive antagonists to more bioactive forms. Endocrinology 1983; 113: 2145–2154.

    Article  PubMed  CAS  Google Scholar 

  61. Morell A, Gregoriadis G, Scheinberg I et al. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246: 1461–1467.

    PubMed  CAS  Google Scholar 

  62. Szkudlinski M, Thotakura N, Weintraub B. Subunit-specific functions of N-linked oligosaccharides in human thyrotropin:role of terminal residues of a-and I3-subunit oligosaccharides in metabolic clearance and bioactivity. Proc Natl Acad Sci USA 1995; 92: 9062–9066.

    Article  PubMed  CAS  Google Scholar 

  63. Thotakura N, Szkudlinski M, Weintraub B. Structure-function studies of oligosaccharides of recombinant human thyrotropin by sequential deglycosylation and resialylation. Glycobiology 1994; 4: 525–533.

    Article  PubMed  CAS  Google Scholar 

  64. Mallet B, Lejeune P-J, Baudry N et al. NGlycans modulate in vivo and in vitro thyroid hormone synthesis. Study at the N-terminal domain of thyroglobulin. J Biol Chem 1995; 270: 29881–29888.

    Article  PubMed  CAS  Google Scholar 

  65. Gesundheit N, Magner J, Chen T et al. Differential sulfation and sialylation of secreted mouse thyrotropin (TSH) subunits: regulation by TSH-releasing hormone. Endocrinology 1986; 119: 455–463.

    Article  PubMed  CAS  Google Scholar 

  66. Baenziger J, Green E. Pituary glycoprotein hormone oligosaccharides:structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta 1988; 947: 287–306.

    Article  PubMed  CAS  Google Scholar 

  67. Smith P, Baenziger J. A pituitary Nacetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science 1988; 242: 930–933.

    Article  PubMed  CAS  Google Scholar 

  68. Smith P, Baenziger J. Molecular basis of recognition by the hormone-specific Nacetylgalactosamine-transferase. Proc Natl Acad Sci USA 1992; 89: 329–333.

    Article  PubMed  CAS  Google Scholar 

  69. Mengeling B, Manzella S, Baenziger J. A cluster of basic amino acids within an a-helix is essential for a-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Proc Natl Acad Sci USA 1995; 92: 502–506.

    Article  PubMed  CAS  Google Scholar 

  70. Baenziger J, Kumar S, Brodreck R et al. Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proc Natl Acad Sci USA 1992; 89: 334–338.

    Article  PubMed  CAS  Google Scholar 

  71. Flete D, Srivastava V, Hindsgaul O et al. A hepatic reticuloendothelial cell receptor specific for SO4-GalNAcß G1cNAc131,2Mana that mediates rapid clearance of lutropin. Cell 1991; 67: 1103–1110.

    Article  Google Scholar 

  72. Chen W, Bahl O. Recombinant carbohydrate variant of human choriogonadotropin 13-subunit descarboxyl terminus(115–145). J Biol Chem 1991; 266: 6246–6251.

    PubMed  CAS  Google Scholar 

  73. Amano J, Nishimura R, Sato S et al. Altered glycosylation of human chorionic gonadotropin decreases its hormonal activity as determined by cyclic adenosine 3,5’monophosphate production in MA-10 cells. Glycobiology 1990; 1: 45–50.

    Article  PubMed  CAS  Google Scholar 

  74. Nemansky M, De Leeuw R, Wijnands R et al. Enzymic remodelling of the N- and O-linked carbohydrate chains of human chorionic gonadotropin. Effects on biological activity and receptor binding. Eur J Biochem 1995; 227: 880–888.

    Article  PubMed  CAS  Google Scholar 

  75. Skarulis M, Wehmann R, Nisula B et al. Glycosylation changes in human chorionic gonadotropin and free alpha subunit as gestation progresses. J Clin Endocrinol Metab 1992; 75: 91–96.

    Article  PubMed  CAS  Google Scholar 

  76. Endo T, Nishimura R, Kawano T et al. Structural differences found in the asparagine-linked sugar chains of human chorionic gonadotropins purified from the urine of patients with invasive mole and with choriocarcinoma. Cancer Res 1987; 47: 5242–5245.

    PubMed  CAS  Google Scholar 

  77. Akkakumov G, Hammond G. Glycosylation of human corticosteroid-binding globulin:differential processing and significance of carbohydrate chains at individual sites. Biochemistry 1994; 33: 5759–5765.

    Article  Google Scholar 

  78. Nathan C, Sporn M. Cytokines in context. J Cell Biol 1991; 113: 981–986.

    Article  PubMed  CAS  Google Scholar 

  79. Smith E. Hormonal activities of cytokines. Chem Immunol 1992; 52: 154–169.

    Article  PubMed  CAS  Google Scholar 

  80. Fukushima K, Watanabe H, Takeo K et al. N-linked sugar chain structure of recombinant human lymphotoxin produced by CHO cells:the functional role of carbohydrate as to its lectin-like character and clearance velocity. Arch Biochem Biophys 1993; 304: 144–153.

    Article  PubMed  CAS  Google Scholar 

  81. Ziltener H, Clark-Lewis I, Jones A et al. Carbohydrate does not modulate the in vivo effects of injected interleukin-3. Exp Hematol 1994; 22: 1070–1075.

    PubMed  CAS  Google Scholar 

  82. Hanasaki K,` Varki A, Stamenkovic I et al. Cytokine-induced ß-galactoside a2–6sialyltransferase in human endothelial cells mediates a2–6-sialylation of adhesion molecules and CD22 ligands. J Biol Chem 1994; 269:10637–10643.

    Google Scholar 

  83. Jeng K, Frigeri L, Lui F. An endogenous lectin, galectin-3, potentiates IL-1 production by human monocytes. Immun Lett 1994; 42: 113–116.

    Article  CAS  Google Scholar 

  84. Nakao H, Nishikawa A, Karasuno T et al. Modulation of N-acetylglucosaminyltransferase III, IV and V activities and alteration of the surface oligosaccharide structure of a myeloma cell line by interleukin-6. Biochem Biophys Res Comm 1990; 172: 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  85. Masumi A, Akamatsu Y, Kitagawa T. Alteration by transforming growth factor-131 of asparagine-linked sugar chains in glucose transporter protein in Swiss 3T3 cells. Biochim Biophys Acta 1994; 1221: 330–338.

    Article  PubMed  CAS  Google Scholar 

  86. Kingsley DM, Kozarsky KF, Hobbie L et al. Reversible defects in 0-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-Ga1NAc 4-epimerase deficient mutant. Cell 1986; 44: 749–759.

    Article  PubMed  CAS  Google Scholar 

  87. Reddy P, Caras I, Krieger M. Effects of 0- linked glycosylation on the cell surface expression and stability of decay accelerating factor, a glycophospholipid anchored membrane protein. J Biol Chem 1989; 264: 17329–17336.

    PubMed  CAS  Google Scholar 

  88. Schachter H, Brockhausen I. The biosynthesis of serine/threonine N-acetylgalactosamine linked carbohydrate moieties. In:Allen H, Kisailus E Eds. Glycoconjugates, Composition, Structure and Function. New York: Marcel Dekker, 1992; 263–332.

    Google Scholar 

  89. Snider M, Rogers O. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J Cell Biol 1985; 100: 826–834.

    Article  PubMed  CAS  Google Scholar 

  90. Hunt RC, Riegler R, Davis AA. Changes in glycosylation alter the affinity of the human transferrin receptor for its ligand. J Biol Chem 1989; 264: 9643–9648.

    PubMed  CAS  Google Scholar 

  91. Williams A, Enns C. A mutated transferrin receptor lacking asparagine-linked glycosylation sites shows reduced functionality and an association with binding immunoglobulin protein. J Biol Chem 1991; 266: 17648–17654.

    PubMed  CAS  Google Scholar 

  92. Hoe M, Hunt R. Loss of one asparagine-linked oligosaccharide from human transferrin receptors results in specific cleavage and association with the endoplasmic reticulum. J Biol Chem 1992; 267: 4916–4923.

    PubMed  CAS  Google Scholar 

  93. Strader C, Fong T, Tota M et al. Structure and function of G protein-coupled receptors. Ann Rev Biochem 1994; 63: 101–132.

    Article  PubMed  CAS  Google Scholar 

  94. Rodriguez CG, Cundell DR, Tuomanen EI et al. The role of N-glycosylation for functional expression of the human platelet-activating factor receptor. Glycosylation is required for efficient membrane trafficking. J Biol Chem 1995; 270: 25178–25184.

    Article  CAS  Google Scholar 

  95. Rajan N, Tsarbopoulos A, Kumarasamy R et al. Characterization of recombinant human interleukin 4 receptor from CHO cells:role of N-linked oligosaccharides. Biochem Biophys Res Comm 1995; 206: 694–702.

    Article  PubMed  CAS  Google Scholar 

  96. Schälke N,Schmidt F. Effects of glycosyla-tion on the mechanism of renaturation of invertase from yeast. J Biol Chem 1988; 263: 8832–8837.

    Google Scholar 

  97. Gibson R, Schlesinger S, Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J Biol Chem 1979; 254: 3600–3607.

    PubMed  CAS  Google Scholar 

  98. Gibson R, Kornfeld S, Schlesinger S. The effect of oligosaccharide chains of different sizes on the maturation and physical properties of the G protein of vesicular stomatitis virus. J Biol Chem 1981; 256: 456–462.

    PubMed  CAS  Google Scholar 

  99. Fischer T, Thoma B, Scheurich P et al. Glycosylation of the human interferon-y receptor. N-linked carbohydrates contribute to structural heterogeneity and are required for ligand binding. J Biol Chem 1990; 265: 1710–1717.

    PubMed  CAS  Google Scholar 

  100. Filipovic I. Effect of inhibiting N-glycosylation on the stability and binding activity of the low density lipoprotein receptor. J Biol Chem 1989; 264: 8815–8820.

    PubMed  CAS  Google Scholar 

  101. Li M, Jourdian G. Isolation and characterization of the two glycosylation isoforms of low molecular weight mannose-6-phosphate receptor from bovine testis. J Biol Chem 1991; 266: 17621–17630.

    PubMed  CAS  Google Scholar 

  102. Wendland M, Waheed A, Schmidt B et al. Glycosylation of the M, 46,000 mannose-6phosphate receptor. Effect on ligand binding, stability and conformation. J Biol Chem 1991; 266: 4598–4604.

    PubMed  CAS  Google Scholar 

  103. Ding DX-H, Vera JC, Heaney ML et al. Nglycosylation of the human granulocyte-macrophage colony-stimulating factor receptor a subunit is essential for ligand binding and signal transduction. J Biol Chem 1995; 270: 24580–24584.

    Article  PubMed  CAS  Google Scholar 

  104. Podskalny J, Rouiller D, Grunberger G et al. Glycosylation defects alter insulin but not insulin-like growth factor I binding to Chinese Hamster Ovary cells. J Biol Chem 1986; 261: 14076–14081.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Growth- and Hormone-Related Functions of Glycoproteins and Cell Surface Receptors. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics