Skip to main content

Spreading Depression—A Gap Junction Mediated Event?

  • Chapter

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

Neural activity is typically detected and expressed in terms of electrical activity. Yet, several recent studies suggest that an electrically silent signaling pathway, diffusion of second messengers across gap junctions, contributes to local communication in the brain. This chapter evaluates current knowledge concerning gap junction-mediated signaling in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dermietzel R, Spray D. Gap junctions in the brain: Where? What type? How many and Why? Trends Neurosci 1993; 16 (5): 186–192.

    Article  PubMed  CAS  Google Scholar 

  2. Makowski L, Caspar D et al. Gap junction structure. II. Analysis of the X-ray diffraction data. J Cell Biol 1977; 77: 629–645.

    Article  Google Scholar 

  3. Spray D, White R et al. Gating of gap junctional conductance. J Biophys 1984; 45: 219–230.

    Article  CAS  Google Scholar 

  4. MacVicar B, Dudek F. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 1981; 213: 782–785.

    Article  PubMed  CAS  Google Scholar 

  5. MacVicar B, Dudek F. Electrotonic coupling between granula cells of rat dentate gyrus: physiological and anatomical evidence. J Neurophysiol 1982; 47: 579–592.

    PubMed  CAS  Google Scholar 

  6. Perez-Velazquez J, Valiante T et al. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neuroscien 1994; 14: 4308–4317.

    CAS  Google Scholar 

  7. Zheng X, Friedman L et al. Cx40 mRNA in astrocytes and neurons of rat brain. Soc of Neurosci Abst 1995; 21: 231. 5.

    Google Scholar 

  8. Smith SJ. Neuromodulatory astrocytes. Current Biology 1994; 4: 807–810.

    Article  PubMed  CAS  Google Scholar 

  9. Cornell-Bell AH, Finkbeiner SM et al. Glutamate induces calcium waves in cultured astrocytes: long range glial signaling. Science 1990; 247: 470–474.

    Article  PubMed  CAS  Google Scholar 

  10. Sanderson M, Charles A et al. Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrin 1994; 98: 173–187.

    Article  CAS  Google Scholar 

  11. Finkbeiner S. Calcium waves in astrocytesfilling in the gaps. Neuron 1992; 8: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  12. Charles AC, Naus CCG et al. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 1992; 118 (1): 195–201.

    Article  PubMed  CAS  Google Scholar 

  13. Charles A, Merrill J et al. Intercellular signaling in glial cell: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 1991; 6: 983–992.

    Article  PubMed  CAS  Google Scholar 

  14. Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 1994; 263: 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  15. Parpura V, Basarsky TA et al. Glutamate-mediated astrocyte-neuron signaling. Nature 1994; 369: 744–747.

    Article  PubMed  CAS  Google Scholar 

  16. Travis J. Glia: The brain’s other cells. Science 1994; 266: 970–972.

    Article  PubMed  CAS  Google Scholar 

  17. Nedergaard M, Cooper A et al. Gap junctions are required for the propagation of spreading depression. J Neurobiol 1995; 28: 433–444.

    Article  PubMed  CAS  Google Scholar 

  18. Hansen A J. Effects of anoxia on ion distribution in the brain. Physiol Rev 1985; 65: 101–148.

    PubMed  CAS  Google Scholar 

  19. Nicholson C, Kraig RP. The behavior of extracellular ions during spreading depression. Amsterdam: Elsevier, 1981.

    Google Scholar 

  20. Grafstein B. Mechanism of spreading cortical depression. J Neurophys 1956; 19: 154–171.

    CAS  Google Scholar 

  21. Van Harreveld A, Fifkova E. Glutamate release from the retina during spreading depression. J Neurobiol 1970; 2: 13–29.

    Article  PubMed  Google Scholar 

  22. Leibowitz D. The glial spike theory. I. On an active role of neuroglia in spreading depression and migraine. Proc R Soc Lond 1992; 250: 287–295.

    Article  CAS  Google Scholar 

  23. Martins-Ferreira H. Propagation of spreading depression in isolated retina. München-Wien-Baltimore, Urban & Schwarzen, 1993.

    Google Scholar 

  24. Johnston M F, Simon SA et al. Interaction of anaesthetics with electrical synapses. Nature 1980; 286: 498–500.

    Article  PubMed  CAS  Google Scholar 

  25. McLarnon J G, Wong JHP et al. The actions of intermediate and lon-chain nalkanols on unitary NMDA currents in hippocampal neurons. Can J Physiol Pharmacol 1991; 69: 1422–1427.

    Article  PubMed  CAS  Google Scholar 

  26. Terrar D A, Victory JGG. Isoflurane depresses membrane currents associated with contraction in myocytes isolated from guinea-pig ventricle. Anesthesiology 1988; 69: 742–749.

    Article  PubMed  CAS  Google Scholar 

  27. El-Fouly M, Trosko J et al. Scrape-loading and dye transfer. Exp Cell Res 1987; 168: 422–430.

    Article  PubMed  CAS  Google Scholar 

  28. Giaume C, Marin P et al. Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc Natl Acad Sci 1991; 88: 5577–5581.

    Article  PubMed  CAS  Google Scholar 

  29. Saito R, Graf R et al. Anesthesia effects potassium evoked spreading depression in cats. J of Cerebral Blood Flow Metab 1993; 13 (1): S86.

    Google Scholar 

  30. Spray DC, Bennett MVL. Physiology and pharmacology of gap junctions. Ann Rev Physiol 1985; 47: 281–303.

    Article  CAS  Google Scholar 

  31. Griffard R, Monyer H et al. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 1990; 506: 339–342.

    Article  Google Scholar 

  32. Vyklicky L, Vlachova V et al. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurons. J Physiol 1990; 430: 497.

    PubMed  CAS  Google Scholar 

  33. Nedergaard M. Spreading depression as a contributor to ischemic brain damage. In: Siesjo BK, Wieloch T, eds. Advances in Neurology, Vol 71; Cellular and molcular mechanisms of ischemic brain damage. Lippincott-Raven Publisher, 1996; 75–85.

    Google Scholar 

  34. Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J of Cereb Blood Flow Metab 1992; 12: 223–229.

    Article  CAS  Google Scholar 

  35. Sheardown M. The triggering of spreading depression in the chicken retina: a pharmacological study. Brain Res 1993; 607: 189–194.

    Article  PubMed  CAS  Google Scholar 

  36. Sugaya E, Takato M et al. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol 1974; 38: 822–841.

    Google Scholar 

  37. MacVicar B. New Insights about glia in neurological diseases. Winter Conference on Brain Research, 1996.

    Google Scholar 

  38. Enqvist M, McCarthy K. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J Neurochem 1994; 62: 489–495.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nedergaard, M., Goldman, S. (1996). Spreading Depression—A Gap Junction Mediated Event?. In: Gap Junctions in the Nervous System. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21935-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21935-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21937-9

  • Online ISBN: 978-3-662-21935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics