Skip to main content

Dendritic Gap Junctions in Developing Neocortex: A Possible Route for Wave-Like Propagation of Neuronal Activity

  • Chapter
Gap Junctions in the Nervous System

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

The notion of large scale synchronized neuronal activity advancing at slow speeds through neural tissue in the form of a traveling wave does not resonate with current concepts of how activity spreads through the nervous system during its normal mode of operation. Such a notion, however, is not new and has often been discussed in the context of various disorders of the nervous system. More recently, slow waves of synchronous activity have been described in the developing retina in vitro1.2 and in a “sleeping” lateral geniculate nucleus (LGN) slice preparation,’ all of which suggests that large-scale synchronization of neurons occurring in the form of traveling waves may play important roles in normal, as well as abnormal, brain function. How ubiquitous traveling waves actually are in the nervous system is not known, but the more widespread use of assorted multisite electrophysiological recording and imaging techniques will make it possible in the future to uncover other examples where they may exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meister M, Wong ROL, Baylor DA, Shatz CJ. Synchronous bursts of action potentials in ganglion cells of the developing retina. Science 1991; 252: 939–943.

    Article  PubMed  CAS  Google Scholar 

  2. Wong ROL, Meister M, Shatz CJ. Transient period of correlated bursting activity during development of the mammalian retina. Neuron 1993; 11: 923–938.

    Article  PubMed  CAS  Google Scholar 

  3. Kim U, Bal T, McCormick DA. Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol 1995; 74: 1301–23.

    PubMed  CAS  Google Scholar 

  4. Lashley KS. Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatr 1941; 46: 331–339.

    Article  Google Scholar 

  5. Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944; 7: 359–390.

    Google Scholar 

  6. Laurintzen M. Cortical spreading depression as a putative migraine mechanism. Trends Neurosci 1987; 10: 8–12.

    Article  Google Scholar 

  7. Milner PM. A note on the possible correspondence between the scotoma of migraine and spreading depression of Leao. Electroencephalogr Clin Neurophysiol 1958; 10: 705.

    Article  PubMed  CAS  Google Scholar 

  8. Herreras O, Largo C, Ibarz JM et al. Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J Neurosci 1994; 14: 7087–7098.

    PubMed  CAS  Google Scholar 

  9. Gutnick MJ, Prince DA. Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice. Science 1981; 211: 67–70.

    Article  PubMed  CAS  Google Scholar 

  10. Connors BW, Bernardo LS, Prince DA. Coupling between neurons of the developing rat neocortex. J Neurosci 1983; 4: 1324–1330.

    Google Scholar 

  11. Peinado A, Yuste R, Katz LC. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 1993; 10: 103–114.

    Article  PubMed  CAS  Google Scholar 

  12. Yuste R, Katz LC. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 1991; 6: 333–344.

    Article  PubMed  CAS  Google Scholar 

  13. Yuste R, Peinado A, Katz LC. Neuronal domains in developing neocortex. Science 1992; 257: 665–668.

    Article  PubMed  CAS  Google Scholar 

  14. Herreras O, Somjen GG. Propagation of spreading depression among dendrites and somata of the same cell population. Brain Res 1993; 610: 276–282.

    Article  PubMed  CAS  Google Scholar 

  15. Peinado A. Waves of synchronous neuronal activity in neonatal rat cortical slices. Soc Neurosci Abs 1995.

    Google Scholar 

  16. Sugaya E, Takato M, Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol 1975; 38: 822–841.

    PubMed  CAS  Google Scholar 

  17. Jones RSG, Heinnemann U. Spontaneous and evoked NMDA-receptor mediated potentials in the entohrinal cortex of the neonate rat in vitro. In: Excitatory Amino Acids and Neuronal Plasticity; Y. Ben-Ari (ed.), 1990. New York: Plenum Press.

    Google Scholar 

  18. Rayport SG, Kandel ER. Epileptogenic agents enhance transmission at an identified weak electrical synapse in Aplysia. Science 1981; 213: 462–464.

    Article  PubMed  CAS  Google Scholar 

  19. Christie MJ, Williams JT, North RA. Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J Neurosci 1989; 9: 3584–3 589.

    Google Scholar 

  20. Michelson HB, Wong RKS. Synchronization of inhibitory neurons in the guinea-pig hippocampus in vitro. J Physiol 1994; 477: 35–45.

    PubMed  Google Scholar 

  21. Parnavelas JG, Nadarajah B. Gap junctions are prevalent in the developing cerebral cortex. Soc Neurosci Abs 1994; 20: 1672.

    Google Scholar 

  22. Parnavelas JG, Nadarajah B. Gap junctions may provide an important means of communication between cells in the cerebral cortex. Soc Neurosci Abs 1995; 21: 1507.

    Google Scholar 

  23. Enkvist MOK, McCarthy KD. Astroglial gap junction communication is increased by treatment with either glutamate or high K. concentration. J Neurochem 1994; 62: 489–495.

    Article  PubMed  CAS  Google Scholar 

  24. Pereda A, Faber DS. NMDA-mediated activity-dependent short-term plasticity of electrotonic coupling. Soc Neurosci Abs 1995; 21: 2006.

    Google Scholar 

  25. Peinado A, Yuste R, Katz LC. Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 1993; 3: 488–498.

    Article  PubMed  CAS  Google Scholar 

  26. Roerig B, Klausa G, Sutor B. Modulatory neurotransmitters reduce dye-coupling between developing lamina II/III pyramidal neurons in rat neocortex. Soc Neurosci Abs 1995; 21: 1509.

    Google Scholar 

  27. Perez-Velazquez JL, Valiante TA, Carlen PL. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: A possible role for electrotonic coupling in epileptogenesis. J Neurosci 1994; 14: 4308–4317.

    PubMed  CAS  Google Scholar 

  28. Aram JA, Michelson HB, Wong RKS. Synchronized gabaergic IPSPs recorded in the neocortex after blockade of synaptic transmission mediated by excitatory amino acids. J Neurophysiol 1991; 65: 1034–1041.

    PubMed  CAS  Google Scholar 

  29. Avoli M, Mattia D, Siniscalchi A, Perreault P, Tomaiuolo F. Pharmacology and electrophysiology of a synchronous gaba-mediated potential in the human neocortex. Neuroscience 1994; 62: 655–666.

    Article  PubMed  CAS  Google Scholar 

  30. Konnerth A, Heinnemann U, Yaari Y. Non-synaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J Neurophysiol 1986; 56: 409–423.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peinado, A. (1996). Dendritic Gap Junctions in Developing Neocortex: A Possible Route for Wave-Like Propagation of Neuronal Activity. In: Gap Junctions in the Nervous System. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21935-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21935-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21937-9

  • Online ISBN: 978-3-662-21935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics