Skip to main content

Future and Conclusions

  • Chapter
Fetuin

Abstract

In the preceding six chapters we tried to summarize our present knowledge of fetuin structure (including its place in the newly formed family of cystatins) and gene organization, to describe fetuin’s role and possible functions as claimed by many studies, and to illustrate the distribution of fetuin in tissue development, with special emphasis on the nervous system. During our research of the material for this book we were struck by how little fetuin revealed about itself from so much work and knowledge gained about the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogata C, Hatada M, Tomlinson G et al. Crystal structure of the intensely sweet protein monellin. Nature 1987; 328: 739–42.

    PubMed  CAS  Google Scholar 

  2. Bode W, Engh R, Musil D et al. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J 1988; 7: 2593–2599.

    PubMed  CAS  Google Scholar 

  3. Machleidt W, Thiele U, Laber B et al. Mechanism of inhibition of pa-pain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Letts 1989; 243: 234–8.

    CAS  Google Scholar 

  4. Bode W, Engh R, Musil D et al. Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction. Biol Chem Hoppe-Seyler 1990; 371 supp1: 111–118.

    Google Scholar 

  5. Bode W, Huber R. Proteinase-protein inhibitor interaction. Biomed Biochim Acta 1991; 50: 437–446.

    PubMed  CAS  Google Scholar 

  6. Stubbs MT, Laber B, Bode W et al. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 1990; 9: 1939–47.

    PubMed  CAS  Google Scholar 

  7. Dieckmann T, Mitschang L, Hofmann M et al. The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J Mol Biol 1993; 234: 1048–1059.

    PubMed  CAS  Google Scholar 

  8. Engh RA, Dieckmann T, Bode W et al. Conformational variability of chicken cystatin. Comparison of structures determined by X-ray diffraction and NMR spectroscopy. J Mol Biol 1993; 234: 1060–1069.

    PubMed  CAS  Google Scholar 

  9. Somoza JR, Jiang F, Tong L et al. Two crystal structures of a potently sweet protein. Natural monellin at 2.75 A resolution and single-chain monellin at 1.7 A resolution. J Mol Biol 1993; 234: 390–404.

    PubMed  CAS  Google Scholar 

  10. Murzin AG. Sweet-tasting protein monellin is related to the cystatin family of thiol proteinase inhibitors. J Mol Biol 1993; 230: 689–694.

    PubMed  CAS  Google Scholar 

  11. Kim SH, de Vos A, Ogata C. Crystal structures of two intensely sweet proteins. Trends Biochem Sci 1988; 13: 13–15.

    PubMed  CAS  Google Scholar 

  12. Kurihara Y. Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins. Crit Rev Food Sci Nutr 1992; 32: 231–52.

    PubMed  CAS  Google Scholar 

  13. Hudson G, Biemann K. Mass spectrometric sequencing of proteins. The structure of subunit I of monellin. Biochem Biophys Res Commun 1976; 71: 212–20.

    PubMed  CAS  Google Scholar 

  14. Frank G, Zuber H. The complete amino acid sequences of both subunits of the sweet protein monellin. Hoppe Seylers Z Physiol Chem 1976; 357: 585–92.

    PubMed  CAS  Google Scholar 

  15. Morris JA, Martenson R, Deibler G et al. Characterization of monellin, a protein that tastes sweet. J Biol Chem 1973; 248: 534–9.

    PubMed  CAS  Google Scholar 

  16. Morris JA, Cagan RH. Effects of denaturants on the sweet-tasting protein monellin. Proc Soc Exp Biol Med 1975; 150: 265–70.

    PubMed  CAS  Google Scholar 

  17. Jirgensons B. Conformational transitions of monellin, an intensely sweet protein. Biochim Biophys Acta 1976; 446: 255–61.

    PubMed  CAS  Google Scholar 

  18. Bohak Z, Li SL. The structure of monellin and its relation to the sweetness of the protein. Biochim Biophys Acta 1976; 427: 153–70.

    PubMed  CAS  Google Scholar 

  19. Cagan RH, Morris JA. The sulfhydryl group of monellin: its chemical reactivity and importance to the sweet taste. Proc Soc Exp Biol Med 1976; 152: 635–40.

    PubMed  CAS  Google Scholar 

  20. Brand JG, Cagan RH. Fluorescence characteristics of native and denatured monellin. Biochim Biophys Acta 1977; 493: 178–87.

    PubMed  CAS  Google Scholar 

  21. Van DWH, Bel WJ. Enzymatic properties of the sweet-tasting proteins thaumatin and monellin after partial reduction. Eur J Biochem 1980; 104: 413–8.

    Google Scholar 

  22. Brand JG, Cagan RH, Bayley DL. Conformational changes of the sweet protein monellin as measured by fluorescence emission. Proc Soc Exp Biol Med 1985; 179: 76–82.

    PubMed  CAS  Google Scholar 

  23. Tomic MT, Somoza JR, Wemmer DE et al. 1H resonance assignments, secondary structure and general topology of single-chain monellin in solution as determined by ‘H 2D-NMR. J Biomol NMR 1992; 2: 557–72.

    PubMed  CAS  Google Scholar 

  24. Fan P, Bracken C, Baum J. Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for beta-sheet to alpha-helix conversion. Biochemistry 1993; 32: 1573–82.

    PubMed  CAS  Google Scholar 

  25. Kim SH, Kang CH, Kim R et al. Redesigning a sweet protein: increased stability and renaturability. Protein Eng 1989; 2: 571–575.

    PubMed  CAS  Google Scholar 

  26. Begbie R. Studies on fetuin from foetal bovine serum. The composition and amino acid sequences of glycopeptides from fetuin. Biochim Biophys Acta 1974; 371: 549–576.

    PubMed  CAS  Google Scholar 

  27. Spiro RG, Bhoyroo VD. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem 1974; 249: 5704–17.

    PubMed  CAS  Google Scholar 

  28. Baenziger JU, Fiete D. Structure of the complex oligosaccharides of fetuin. J Biol Chem 1979; 254: 789–95.

    PubMed  CAS  Google Scholar 

  29. Nilsson B, Norden NE, Svensson S. Structural studies on the carbohydrate portion of fetuin. J Biol Chem 1979; 254: 4545–4553.

    PubMed  CAS  Google Scholar 

  30. Oberholtzer JC, Englander SW, Horwitz AF. Hydrogen-bonded structure of the complex N-linked fetuin glycopeptide. Biochemistry 1981; 20: 4785–4792.

    PubMed  CAS  Google Scholar 

  31. Bergh ML, Hooghwinkel GJ, vandenEijnden DH. Biosynthesis of the O-glycosidically linked oligosaccharide chains of fetuin. Indications for an a-N-acetylgalactosaminide a2-*6 sialyltransferase with a narrow acceptor specificity in fetal calf liver. J Biol Chem 1983; 258: 7430–6.

    PubMed  CAS  Google Scholar 

  32. Berman E. Reinvestigation of the carbohydrate chains of calf fetuin using 13C-NMR spectroscopy. Carbohydrate Res 1986; 152: 33–46.

    CAS  Google Scholar 

  33. Berman E, Bendel P. One-and two-dimensional 90.5-MHz 13C-NMR spectroscopy of the N-linked triantennary oligosaccharide units of calf fetuin. FEBS Letts 1986; 204: 257–60.

    CAS  Google Scholar 

  34. Townsend RR, Hardy MR, Wong TC et al. Binding of N-linked bovine fetuin glycopeptides to isolated rabbit hepatocytes: Gal/GaINAc hepatic lectin discrimination between Ga1(3(1,4)G1cNAc and Gall3(1,3)G1cNAc in a triantennary structure. Biochemistry 1986; 25: 5716–25.

    PubMed  CAS  Google Scholar 

  35. Takasaki S, Kobata A. Asparagine-linked sugar chains of fetuin: occurrence of tetrasialyl triantennary sugar chains containing the Gall31–3G1cNAc sequence. Biochemistry 1986; 25: 5709–15.

    PubMed  CAS  Google Scholar 

  36. Edge AS, Spiro RG. Presence of an 0-glycosidically linked hexasaccharide in fetuin. J Biol Chem 1987; 262: 16135–16141.

    PubMed  CAS  Google Scholar 

  37. Berman E, Dabrowski U, Dabrowski J. A two-dimensional ‘H-NMR (500 MHz) and 13C-NMR (125 MHz) study of N-linked glycopeptides derived from calf fetuin. Carbohydr Res 1988; 176: 1–15.

    PubMed  CAS  Google Scholar 

  38. Green ED, Adelt G, Baenziger JU et al. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz ‘H NMR spectroscopy. J Biol Chem 1988; 263: 18253–68.

    PubMed  CAS  Google Scholar 

  39. Yet MG, Chin CC, Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem 1988; 263: 111–7.

    PubMed  CAS  Google Scholar 

  40. Cumming DA, Hellerqvist CG, Harris-Brandts M et al. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry 1989; 28: 6500–12.

    PubMed  CAS  Google Scholar 

  41. Bendiak B, Harris-Brandts M, Michnick SW et al. Separation of the complex asparagine-linked oligosaccharides of the glycoprotein fetuin and elucidation of three triantennary structures having sialic acids linked only to galactose residues. Biochemistry 1989; 28: 6491–9.

    PubMed  CAS  Google Scholar 

  42. Watzlawick H, Walsh MT, Yoshioka Y et al. Structure of the N- and 0-glycans of the A-chain of human plasma a2HS-glycoprotein as deduced from the chemical compositions of the derivatives prepared by stepwise degradation with exoglycosidases. Biochemistry 1992; 31: 12198–12203.

    PubMed  CAS  Google Scholar 

  43. Hayase T, Rice KG, Dziegielewska KM et al. Comparison of N-glycosides of fetuins from different species and human a2-HS-glycoprotein. Biochemistry 1992; 31: 4915–4921.

    PubMed  CAS  Google Scholar 

  44. Boutin B, Feng SH, Arnaud P. The genetic polymorphism of a2-HS glycoprotein: study by ultrathin-layer isoelectric focusing and immunoblot. Am J Hum Genet 1985; 37: 1098–1105.

    PubMed  CAS  Google Scholar 

  45. Yuasa I, Taira T, Suenaga K et al. Determination of a2-HS glycoprotein phenotypes by isoelectric focusing and immunoblotting: polymorphic occurrence of HSGA*5 in Okinawa. Hum Genet 1985; 70: 32–34.

    PubMed  CAS  Google Scholar 

  46. Umetsu K, Kashimura S, Ikeda N et al. A new a2-HS glycoprotein allele (AHS*5) in two Japanese families. Hum Genet 1984; 68: 264–265.

    PubMed  CAS  Google Scholar 

  47. Umetsu K, Kshimura S, Ikeda N et al. A new a2-HS glycoprotein typing by isoelectric focusing. Hum Genet 1984; 67: 70–71.

    PubMed  CAS  Google Scholar 

  48. Umetsu K, Yuasa Y, Suzuki T. The polymorphism of desialyzed a2-HSglycoprotein (AHS): isoelectric focusing in 2.5M urea as a method for identification of genetic variants. Hum Hered 1986; 73: 372–373.

    CAS  Google Scholar 

  49. Umetsu K, Yuasa I, Nishimura H et al. Genetic polymorphisms of orosomucoid and a2-HS-glycoprotein in a Philippine population. Hum Hered 1988; 38: 287–290.

    PubMed  CAS  Google Scholar 

  50. Cox DW, Andrews BJ, Wills DE. Genetic polymorphism of a2-HS glycoprotein. Am J Hum Genet 1986; 38: 699–706.

    PubMed  CAS  Google Scholar 

  51. Westwood SA, Seaman PJ, Ablett PJ et al. A2HS*11: a new allele of a2-HS glycoprotein found in Afro-Caribbeans. Electrophoresis 1987; 8: 559–561.

    CAS  Google Scholar 

  52. Westwood SA, Seaman PJ, O’Brien C et al. The phenotypic frequencies of group specific component and a2-HS-glycoprotein in three ethnic groups. The use of these proteins as racial markers in forensic biology. Forensic Sci Int 1987; 35: 197–207.

    PubMed  CAS  Google Scholar 

  53. Sebetan IM.. A simple pattern method for a2-HS-glycoprotein typing. J Forensic Sci 1988; 33: 1031–4.

    PubMed  CAS  Google Scholar 

  54. Sebetan IM, Heshmat MM. Genetic polymorphism of desialyzed a2-HSglycoprotein by ultrathin isoelectric focusing. Z Rechtsmed 1988; 101: 205–7.

    PubMed  CAS  Google Scholar 

  55. Thomas AS. Phenotyping of a2-HS glycoprotein in bloodstains by isoelectric focusing and immunoblotting. J Forensic Sci Soc 1989; 29: 325–330.

    PubMed  CAS  Google Scholar 

  56. Salzano FM, Umetsu K, Yuasa I et al. Isoelectric focusing studies in Brazilian Indians-uncovering variation of ORM, AHSG and IF. Jinrui Idengaku Zasshi 1990; 35: 283–290.

    PubMed  CAS  Google Scholar 

  57. Fukuma Y, Kashimura S, Umetsu K et al. Genetic variation of a2-HSglycoprotein in the Kyushu district of Japan: description of three new rare variants. Hum Hered 1990; 40: 49–51.

    PubMed  CAS  Google Scholar 

  58. Fukuma Y, Kashimura S, Nakano B et al. Genetic polymorphism of a2-HSglycoprotein: four new alleles and allele frequencies in Japanese. Hum Hered 1991; 41: 89–92.

    PubMed  CAS  Google Scholar 

  59. Cerri N, De FF. Genetic polymorphism of a2-HS glycoprotein in Lombardy [Italy]. Int J Legal Med 1991; 104: 77–79.

    PubMed  CAS  Google Scholar 

  60. Alonso A, Weidinger S, Visedo G et al. Genetic polymorphism of a2-HSglycoprotein in a Spanish population. Hum Hered 1991; 41: 305–8.

    PubMed  CAS  Google Scholar 

  61. Abe S, Kurisaki E, Mizusawa I et al. a2-HS-glycoprotein phenotype frequencies in Cook Islanders. Hum Hered 1991; 41: 74–76.

    PubMed  CAS  Google Scholar 

  62. Saha N, Undevia JV, Juneja RK et al. Polymorphisms of alpha-1-acid (orosomucoid), a2-HS-glycoproteins and alpha-1-B among the Parsis of India. Hum Hered 1992; 42: 367–71.

    PubMed  CAS  Google Scholar 

  63. Garcia O, Alonso A. Genetic polymorphism of human a2-HS-glycoprotein (AHSG) in the resident population of the Basque Country [northern Spain]. Int J Legal Med 1992; 105: 81–82.

    PubMed  CAS  Google Scholar 

  64. Hou Y, Gou Q, Wu M. Genetic polymorphisms of a2-HS-glycoprotein, group-specific component and orosomucoid in the Han population, Chengdu [China]. Hum Hered 1992; 42: 80–3.

    Google Scholar 

  65. Caeiro B, Cameselle FD, Teixeira C et al. a2-HS-glycoprotein gene frequencies in Galicia: further evidence for a dine in European populations. Hum Hered 1993; 43: 35–8.

    PubMed  CAS  Google Scholar 

  66. Spiro RG. Studies on fetuin, a glycoprotein of fetal serum. I. isolation, chemical composition, and physicochemical properties. J Biol Chem 1960; 235: 2860–2869.

    Google Scholar 

  67. Schmid K, Bürgi W. Preparation and properties of the human Ba-a2glycoproteins. Biochim Biophys Acta 1961; 47: 440–453.

    PubMed  CAS  Google Scholar 

  68. Ohnishi T, Arakaki N, Nakamura O et al. Purification, characterization, and studies on biosynthesis of a 59-kDa bone sialic acid-containing protein (BSP) from rat mandible using a monoclonal antibody. Evidence that 59-kDa BSP may be the rat counterpart of human a2-HS glycoprotein and is synthesized by both hepatocytes and osteoblasts. J Biol Chem 1991; 266: 14636–14645.

    PubMed  CAS  Google Scholar 

  69. Auberger P, Falquerho L, Contreres JO et al. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase. cDNA cloning, purification, and anti-mitogenic activity. Cell 1989; 58: 631–640.

    PubMed  CAS  Google Scholar 

  70. Ohnishi T, Nakamura O, Arakaki N et al. Effects of cytokines and growth factors on phosphorylated fetuin biosynthesis by adult rat hepatocytes in primary culture. Biochem Biophys Res Comm 1994; 200: 598–605.

    PubMed  CAS  Google Scholar 

  71. Johnson LN, Barford D. The effects of phosphorylation on the structure and function of proteins. Ann Rev Biophys Biomol Struct 1993; 22: 199–232.

    CAS  Google Scholar 

  72. Auerswald EA, Rossler D, Mentele R et al. Cloning, expression and characterization of human kininogen domain 3 FEBS Letts 1993; 321: 93–7.

    CAS  Google Scholar 

  73. Walsh TA, Strickland JA. Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol 1993; 103: 1227–1234.

    PubMed  CAS  Google Scholar 

  74. Rodis P, Hoff JE. Naturally occurring protein crystals in the potato. Plant Physiol 1984; 74: 907–911.

    PubMed  CAS  Google Scholar 

  75. Falquerho L, Patey G, Paquereau L et al. Primary structure of the rat gene encoding an inhibitor of the insulin receptor tyrosine kinase. Gene 1991; 98: 209–216.

    PubMed  CAS  Google Scholar 

  76. Falquerho L, Paquereau L, Vilarem MJ et al. Functional characterization of the promoter of pp63, a gene encoding a natural inhibitor of the insulin receptor tyrosine kinase. Nucleic Acids Res 1992; 20: 1983–1990.

    PubMed  CAS  Google Scholar 

  77. Akhoundi C, Amiot M, Auberger P et al. Insulin and interleukin-1 differentially regulate pp63, an acute phase phosphoprotein in hepatoma cell line. J Biol Chem 1994; 269: 15925–15930.

    PubMed  CAS  Google Scholar 

  78. Wight DC, Wagner TE. Transgenic mice: a decade of progress in technology and research. Mutation Research 1994; 307: 429–440.

    PubMed  CAS  Google Scholar 

  79. Lawn RM. The apolipoprotein(a) gene: characterization of 5’ flanking regions and expression in transgenic mice. Chemistry zhaohuan Physics of Lipids 1994; 67–68: 19–23.

    Google Scholar 

  80. Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 1981; 214: 1244–1246.

    PubMed  CAS  Google Scholar 

  81. Brinster RL, Chen HY, Messing A et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 1984; 37: 367–379.

    PubMed  CAS  Google Scholar 

  82. Palmiter RD, Brinster RL. Germ-line transformation of mice. Ann Rev Genet 1986; 20: 465–499.

    PubMed  CAS  Google Scholar 

  83. Capecchi MR. Altering the genome by homologous recombination. Science 1989; 244: 1288–1292.

    PubMed  CAS  Google Scholar 

  84. Wolgemuth DJ, Behringer RR, Mostoller MP et al. Transgenic mice overexpressing the mouse homeobox-containing gene Hox-1.4 exhibit abnormal gut development. Nature 1989; 337: 464–467.

    PubMed  CAS  Google Scholar 

  85. Letterio JJ, Geiser AG, Kulkarni AB et al. Maternal rescue of transforming growth factor-f31 null mice. Science 1994; 264: 1936–1938.

    PubMed  CAS  Google Scholar 

  86. Chisaka O, Capecchi MR. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox-1.5. Nature 1991; 350: 473–479.

    PubMed  CAS  Google Scholar 

  87. Lufkin T, Mark M, Hart CP et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 1992; 359: 835–841.

    PubMed  CAS  Google Scholar 

  88. Morgan BA, Izpisua-Belmonte J, Duboule D et al. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic mutations. Nature 1992; 358: 236–239.

    PubMed  CAS  Google Scholar 

  89. McLain K, Schreiner C, Yager KL et al. Ectopic expression of Hox-2.3 induces cranofacial and skeletal malformations in transgenic mice. Mech Devel 1992; 39: 3–16.

    CAS  Google Scholar 

  90. Kappel CA, Bieberich CJ, Jay G. Evolving concepts in molecular pathology. FASEB J 1994; 8: 583–592.

    PubMed  CAS  Google Scholar 

  91. Adrian GS, Rivera EV, Adrian EK et al. Lead suppresses chimeric human transferrin gene expression in the transgenic mouse liver. Neurotoxicology 1993; 14: 273–282.

    PubMed  CAS  Google Scholar 

  92. Thiesen M, Behringer RR, Cadd GG et al. A C/EBP binding site in the transferrin promoter is essential for expression in the liver but not the brain of transgenic mice. Mol Cell Biol 1993; 13: 7666–7676.

    Google Scholar 

  93. Cox LA, Adrian GS. Posttranscriptional regulation of chimeric human transferrin genes by iron. Biochemistry 1993; 32: 4738–4745.

    PubMed  CAS  Google Scholar 

  94. Lu Y, Cox LA, Herbert DC et al. Expression of chimeric human transferrin-chloramphenicol acetyltransferase genes in liver and brain of trans-genic mice during development. Dev Biol 1993; 155: 452–458.

    PubMed  CAS  Google Scholar 

  95. Adrian GS, Herbert DC, Robinson LK et al. Expression of a human chimeric transferrin gene in senescent transgenic mice reflects the decrease of transferrin levels in aging humans. Biochim Biophys Acta 1992; 1132: 168–176.

    PubMed  CAS  Google Scholar 

  96. Adrian GS, Bowman BH, Herbert DC et al. Human transferrin. Expression and iron modulation of chimeric genes in transgenic mice. J Biol Chem 1990; 265: 13344–13350.

    PubMed  CAS  Google Scholar 

  97. Schughart K, Bieberich CJ, Eid R et al. A regulatory region from the mouse Hox-2.2 promoter directs gene expression into developing limb buds. Development 1991; 112: 807–811.

    PubMed  CAS  Google Scholar 

  98. Kress C, Vogels R, de Graaff W et al. Hox-2.3 upstream sequences mediate lacZ expression in intermediate mesoderm derivatives of transgenic mice. Development 1990; 109: 775–786.

    PubMed  CAS  Google Scholar 

  99. Le Mouellic H, Lallemand Y, Brulet P. Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 1992; 69: 251–264.

    PubMed  Google Scholar 

  100. Barinaga M. Knockout mice: round two. Science 1994; 265: 26–28.

    PubMed  CAS  Google Scholar 

  101. Esumi H, Takahashi Y, Sato S et al. A seven-base-pair deletion in an intron of the albumin gene of analbuminemic rats. Proc Natl Acad Sci USA 1983; 80: 95–99.

    PubMed  CAS  Google Scholar 

  102. Shalaby F, Shafritz DA. Exon skipping during splicing of albumin mRNA precursors in Nagase analbuminemic rats. Proc Natl Acad Sci USA 1990; 87: 2652–2656.

    PubMed  CAS  Google Scholar 

  103. Boman H, Hermodson H, Hammond CA et al. Analbuminemia in an American Indian girl. Clin Genet 1976; 9: 513–526.

    PubMed  CAS  Google Scholar 

  104. Inoue M. Metabolism and transport of amphipathic molecules in analbuminemic rats and human subjects. Hepatology 1985; 5: 892–898.

    PubMed  CAS  Google Scholar 

  105. Chong P, Klein M. Single-step purification of pertussis toxin and its subunits by heat-treated fetuin-sepharose affinity chromatography. Biochem Cell Biol 1989; 67: 387–91.

    PubMed  CAS  Google Scholar 

  106. Schmitt HJ, Wagner S. Pertussis vaccines-1993. Eur J Pediatrics 1993; 152: 462–466.

    CAS  Google Scholar 

  107. Robinson A, Irons LI, Ashworth LAE. Pertussis vaccine: present status and future prospects. Vaccine 1985; 3: 11–22.

    PubMed  CAS  Google Scholar 

  108. Weiss AA, Hewlett EL. Virulence factors of Bordetella pertussis. Ann Rev Microbiol 1986; 40: 661–686.

    CAS  Google Scholar 

  109. Mitsakos A, Hanisch FG. One-step purification of an alpha(1–3)-Lfucosyltransferase from human amniotic fluid by fetuin-agarose affinity chromatography. Biol Chem Hoppe Seyler 1989; 370: 239–43.

    PubMed  CAS  Google Scholar 

  110. Fiume L, Mattioli A, Balboni PG et al. Albumin conjugates of fungal toxins and of inhibitors of DNA synthesis. In: Drug carriers in biology and medicine. Gregoriadis G, ed. New York: Academic Press 1979: 3–21.

    Google Scholar 

  111. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Ann Rev Biochem 1982; 51: 531–554.

    PubMed  CAS  Google Scholar 

  112. Tolleshaug H. Intracellular segregation of asialo-transferrin and asialo-fetuin following uptake by the same receptor system in suspended hepatocytes. Biochim Biophys Acta 1984; 803: 182–190.

    PubMed  CAS  Google Scholar 

  113. Wattiaux R, Misquith S, Wattiaux-De Coninck S et al. Fate of asialofetuin endocytosed by rat liver. Biochem Biophys Res Comm. 1989; 158: 313–318.

    PubMed  CAS  Google Scholar 

  114. Kaufman SS, Blain PL, Park JH et al. Role of microfilaments in asialoglycoprotein processing in adult and developing liver. Am J Physiol 1990; 259: G639–645.

    PubMed  CAS  Google Scholar 

  115. Jansen RW, Kruijt JK, van Berkel TJC et al. Coupling of the antiviral drug Ara-AMP to lactosaminated albumin leads to specific uptake in rat and human hepatocytes. Hepatology 1993; 18: 146–152.

    PubMed  CAS  Google Scholar 

  116. Schouten D, van der Kooij M, Muller J et al. Development of lipoprotein-like lipid particles for drug targeting: neo-high density lipoproteins. Molec Pharmacol 1993; 44: 486–492.

    CAS  Google Scholar 

  117. Rogers JC, Kornfeld S. Hepatic uptake of protein coupled to fetuin glycopeptide. Biochem Biophys Res Comm 1971; 45: 622–629.

    PubMed  CAS  Google Scholar 

  118. Fiume L, Mattioli A, Balboni PG et al. Enhanced inhibition of virus DNA synthesis in hepatocytes by trifluorothymidine coupled to asialofetuin. FEBS Letts 1979; 103: 47–51.

    CAS  Google Scholar 

  119. Fiume L, Mattioli A, Busi C et al. Selective inhibition of Ectromelia virus DNA synthesis in hepatocytes by adenine-9-beta-D-arabino-furanoside (ARA-A) and adenine-9-beta-D-arabino-monophosphate (ARA-AMP) conjugated to asialofetuin. FEBS Letts 1979; 116: 185–188.

    Google Scholar 

  120. Cawley DB, Simpson DL, Herschman HR. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes. Proc Natl Acad Sci USA 1981; 78: 3383–3387.

    PubMed  CAS  Google Scholar 

  121. Tsuchiya S, Aramaki Y, Hara T et al. Preparation and disposition of asialofetuin-labelled liposome. Biopharmaceut Drug Dispos 1986; 7: 549–558.

    CAS  Google Scholar 

  122. Hara T, Ishihara H, Aramaki Y et al. Specific uptake of asialofetuin-labeled liposomes by isolated hepatocytes. Intl J Pharmaceut 1988; 42: 69–75.

    CAS  Google Scholar 

  123. Ishihara H, Hayashi Y, Hara T et al. Specific uptake of asialofetuin-tacked liposomes encapsulating interferon-gamma by human hepatoma cells and its inhibitory effect on hepatitis B virus replication. Biochem Biophys Res Comm 1991; 174: 839–845.

    PubMed  CAS  Google Scholar 

  124. Ishihara H, Hara T, Aramaki Y et al. Preparation of asialofetuin-labeled liposomes with encapsulated human interferon-gamma and their uptake by isolated rat hepatocytes. Pharmaceut Res 1990; 7: 542–546.

    CAS  Google Scholar 

  125. Kaneo Y, Tanaka T, Iguchi S. Targeting of mitomycin C to the liver by the use of asialofetuin as a carrier. Chem Pharm Bull 1991; 39: 999–1003.

    PubMed  CAS  Google Scholar 

  126. Ohshita T, Nikawa T, Towatari T et al. Effects of selective inhibition of cathepsin B and general inhibition of cysteine proteinases on lysosomal proteolysis in rat liver in vivo and in vitro. Eur J Biochem 1992; 209: 223–231.

    PubMed  CAS  Google Scholar 

  127. Roseng L, Tolleshaug H, Berg T. Uptake, intracellular transport, and degradation of polyethylene glycol-modified asialofetuin in hepatocytes. J Biol Chem 1992; 267: 22987–22993.

    PubMed  CAS  Google Scholar 

  128. vanderSluijs P, Meijer DK. Limitations on the specificity of targeting asialoglycoprotein-drug conjugates to hepatocyes. Targeted Diagnosis zhaohuan Therapy 1991; 4: 235–264.

    CAS  Google Scholar 

  129. Fiume L, Mattioli A, Busi C et al. Selective inhibition of electromelia virus DNA synthesis in hepatocytes by adenine-9-beta-D-arabinofuranoside (ARA-A) and adenine-9-beta-D-arabinofuranoside 5’-monophosphate (ARA-AMP) conjugated to asialofetuin. FEBS Letts 1980; 116: 185–188.

    CAS  Google Scholar 

  130. Downs SM, Schroeder AC, Eppig JJ. Serum maintains the fetilizability of mouse oocytes matured in vitro by preventing hardening of the zona pellucida. Gamete Res 1986; 15: 115–122.

    Google Scholar 

  131. Schroeder AC, Schultz RM, Kopf GS et al. Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. Biol Reprod 1990; 43: 891–7.

    PubMed  CAS  Google Scholar 

  132. Eppig JJ, Wigglesowrth K, O’Brien MJ. Comparison of embryonic developmental competence of mouse oocytes grown with and without serum. Mol Reprod Dev 1992; 32: 33–40.

    PubMed  CAS  Google Scholar 

  133. Kalab P, Kopf GS, Schultz RM. Modifications of the mouse zona pellucida during oocyte maturation and egg activation: effects of newborn calf serum and fetuin. Biol Reprod 1991; 45: 783–7.

    PubMed  CAS  Google Scholar 

  134. Kalab P, Schultz RM, Kopf GS. Modifications of the mouse zona pellucida during oocyte maturation: inhibitory effects of follicular fluid, fetuin, and α2-HS-glycoprotein. Biol Reprod 1993; 49: 561–7.

    PubMed  CAS  Google Scholar 

  135. Berger T, Beierle JW. Inhibition of sperm motility by bovine serum components. Biol Reprod 1990; 42: 545–51.

    PubMed  CAS  Google Scholar 

  136. Pedersen KO. Fetuin, a new globulin isolated from serum. Nature 1944; 154: 575.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dziegielewska, K.M., Brown, W.M. (1995). Future and Conclusions. In: Fetuin. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21898-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21898-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21900-3

  • Online ISBN: 978-3-662-21898-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics