Skip to main content

The Cyclic Category, Tor and Ext Interpretation

  • Chapter
Cyclic Homology

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 301))

  • 543 Accesses

Abstract

Simplicial objects in an arbitrary category C can be described as functors from the category of non-decreasing maps Δ op to C. Similarly one can construct a category, denoted ΔC and called Connes cyclic category, such that a cyclic object in C can be viewed as a functor from ΔC op to C. The cyclic category ΔC was first described by Connes [1983, where it is denoted Λ or ΔK] who showed how it is constructed out of Δ and the finite cyclic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments on Chapter 6

  • Connes, A., Cohomologie cyclique et foncteurs Ext°, C. R. Acad. Sci. Paris Sér. A-B 296 (1983), 953–958. 86d: 18007

    MathSciNet  MATH  Google Scholar 

  • Loday, J.-L., Comparaison des homologies du groupe linéaire et de son algèbre de Lie, Ann. Inst. Fourier 37 (1987), 167–190. 89i: 17011

    Article  MathSciNet  MATH  Google Scholar 

  • Krasauskas, R.L., Lapin, S.V., Solovev, Yu. P., Dihedral homology and cohomology, Basic notions and constructions. Mat. Sb. 133:1 (1987), 25–48. 88i: 18014

    Google Scholar 

  • Dunn, G., Dihedral and quaternionic homology and mapping spaces, K-theory 3 (1989), 141–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Lodder, J.M., Dihedral homology and the free loop space, Proc. London Math. Soc. 60 (1990), 201–224. 91a: 55007

    Article  MathSciNet  Google Scholar 

  • Lodder, J.M., Cyclic homology and de Rham cohomology, Mathematische Zeitschrift 208 (1991), 489–502.

    Article  MathSciNet  Google Scholar 

  • Fiedorowicz, Z., Loday, J.-L., Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), 57–87. 91j: 18018

    Article  MathSciNet  MATH  Google Scholar 

  • Krasauskas, R.L., Skew simplicial groups, Litovsk. Mat. Sb. 27 (1987) No. 1, 89–99. 88m:18022

    Google Scholar 

  • Loday, J.-L., Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989), 205–230. 89m: 18017

    Article  MathSciNet  MATH  Google Scholar 

  • Burghelea, D., Fiedorowicz, Z., Gajda, W., Adams operations in Hochschild and cyclic homology of the de Rham algebra and free loop spaces, K-theory. 4 (1991), 269–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Mccarthy, R., The cyclic homology of an exact category, preprint, Bielefeld (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loday, JL. (1992). The Cyclic Category, Tor and Ext Interpretation. In: Cyclic Homology. Grundlehren der mathematischen Wissenschaften, vol 301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21739-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21739-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21741-2

  • Online ISBN: 978-3-662-21739-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics