Excursions

  • Daniel Revuz
  • Marc Yor
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 293)

Abstract

Throughout this section, we consider a measurable space (U,u) to which is added a point δ and we set U δ = U ∪{δ}, U δ = σ(u,{δ}).

Keywords

Poisson Process Poisson Point Process Predictable Process Coordinate Process Strong Markov Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Comments

  1. 1.
    Williams, D. Markov properties of Brownian local time. Bull. Amer. Math. Soc. 76 (1969) 1035 - 1036Google Scholar
  2. 2.
    Williams, D. Decomposing the Brownian path. Bull. Amer. Math. Math. Soc. 76 (1970) 871 - 873Google Scholar
  3. 3.
    Williams, D. Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3) 28 (1974) 738 - 768MATHCrossRefGoogle Scholar
  4. 4.
    Williams, D. A simple geometric proof of Spitzer’s winding number formula for 2-dimensional Brownian motion. University College, Swansea (1974)Google Scholar
  5. 5.
    Williams, D. On a stopped Brownian motion formula of H.M. Taylor. Sém. Prob. X. Lecture Notes in Mathematics, vol. 511. Springer, Berlin Heidelberg New York 1976, pp. 235 - 239Google Scholar
  6. 6.
    Williams, D. On Lévy’s downcrossing theorem. Z.W 40 (1977) 157 - 158MATHCrossRefGoogle Scholar
  7. 7.
    Williams, D. Diffusions, Markov processes and Martingales, vol. 1: Foundations. Wiley and Sons, New York 1979Google Scholar
  8. 8.
    Williams, D. Conditional excursion theory. Sém. Prob. XIII. Lecture Notes in Mathematics, vol. 721. Springer, Berlin Heidelberg New York 1979, pp. 490 - 494Google Scholar
  9. 1.
    Wong, E., and Zakai, M. The oscillation of stochastic integrals. Z.W. 4 (1965) 103-112Google Scholar
  10. 1.
    Yamada, T. On a comparison theorem for solutions of stochastic differential equations. J. Math. Tokyo Univ. 13 (1973) 497 - 512MATHGoogle Scholar
  11. 2.
    Yamada, T. On some representations concerning the stochastic integrals. Proba. and Math. Statistics 4, 2 (1984) 153 - 166MATHGoogle Scholar
  12. 3.
    Yamada, T. On the fractional derivative of Brownian local times. J. Math. Kyoto Univ. 25, 1 (1985) 49 - 58MathSciNetMATHGoogle Scholar
  13. 4.
    Yamada, T. On some limit theorems for occupation times of one-dimensional Brownian motion and its continuous additive functionals locally of zero energy. J. Math. Kyoto Univ. 26, 2 (1986) 309 - 222MathSciNetMATHGoogle Scholar
  14. 1.
    Yamada, T., and Ogura, Y. On the strong comparison theorem for the solutions of stochastic differential equations. Z.W. 56 (1981) 3 - 19MathSciNetMATHCrossRefGoogle Scholar
  15. 1.
    Yamada, T., and Watanabe, S. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971) 155 - 167MathSciNetMATHGoogle Scholar
  16. 1.
    Yan, J.A. A propos de l’intégrabilité uniforme des martingales exponentielles. Sém. Prob. XVI. Lecture Notes in Mathematics, vol. 920. Springer, Berlin Heidelberg New York 1982, pp. 338 - 347Google Scholar
  17. 2.
    Yan, J.A. Sur un théorème de Kazamaki-Sekiguchi. Sém. Prob. XVII. Lecture Notes in Mathematics vol. 986. Springer, Berlin Heidelberg New York 1983, pp. 121 - 122Google Scholar
  18. 1.
    Yan, J.A., and Yoeurp, C. Représentation des martingales comme intégrales stochastiques de processus optionnels. Sém. Prob. X. Lecture Notes in Mathematics, vol. 511. Springer, Berlin Heidelberg New York 1976, pp. 422 - 431Google Scholar
  19. 1.
    Yoeurp, C. Compléments sur les temps locaux et les quasi-martingales. Astérique 52-53, Temps locaux (1978) 197 - 218Google Scholar
  20. 2.
    Yoeurp, C. Sur la dérivation des intégrales stochastiques. Sém. Prob. XIV. Lecture Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New York 1980, pp. 249 - 253Google Scholar
  21. 3.
    Yoeurp, C. Contribution au calcul stochastique. Thèse de doctorat d’état, Université de Paris V I, 1982Google Scholar
  22. 4.
    Yoeurp, C. Théorème de Girsanov généralisé et grossissement de filtrations. In: Grossissement de filtrations: exemples et applications. Lecture Notes in Mathematics, vol. 1118. Springer, Berlin Heidelberg New York 1985, pp. 172 - 196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Daniel Revuz
    • 1
  • Marc Yor
    • 2
  1. 1.Département de MathématiquesUniversité de Paris VIIParis Cedex 05France
  2. 2.Laboratoire de ProbabilitésUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations