Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 1))

Abstract

Any solid-state laser operating in either cw or pulsed mode of operation must dissipate an appreciable amount of heat. The heat arises because:

  1. 1.

    The energy difference between the pump bands and the fluorescence energy levels is lost to the host lattice through radiationless transitions;

  2. 2.

    the quantum efficiency of the fluorescence processes involved in the laser transitions is less than unity, therefore some of the photon lose their total energy to the host lattice;

  3. 3.

    the spectral distribution of the pump light is such that there is considerable absorption by the host directly, mainly in the ultraviolet and infrared bands, in which case all energy in those spectral regions is converted into heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.S. Carslaw, J.0 Jaeger: Conduction of Heat in Solids (Oxford Univ. Press, London 1948 ) p. 191

    Google Scholar 

  2. S.T. Hsu: Engineering Heat Transfer ( Van Nostrand, Princeton, NJ 1963 ) p. 274

    Google Scholar 

  3. W. Koechner: Appl. Opt. 9, 1429 (1970)

    Article  ADS  Google Scholar 

  4. W. Koechner: J. Appl. Phys. 44, 3162 (1973)

    Article  ADS  Google Scholar 

  5. S. Timoshenko, J.N. Goodier: Theory of Elasticity ( McGraw-Hill, New York 1951 )

    MATH  Google Scholar 

  6. W. Koechner: J. Appl. Phys. 2, 279 (1973)

    Article  ADS  Google Scholar 

  7. M. Born, E. Wolf: Principles of Optics ( Pergamon, London 1965 )

    Google Scholar 

  8. J.F. Nye: Physical Properties of Crystals (Oxford Univ. Press, London 1964 )

    Google Scholar 

  9. R.W. Dixon: J. Appl. Phys. 38, 5149 (1967)

    Article  ADS  Google Scholar 

  10. J.D. Foster, L.M. Osterink: J. Appl. Phys. 41, 3656 (1970)

    Article  ADS  Google Scholar 

  11. W. Koechner, D.K. Rice: IEEE J. QE-6, 557 (1970)

    Article  Google Scholar 

  12. H. Kogelnik: Bell Syst. Tech. J. 44, 455 (1965)

    Google Scholar 

  13. D.A. LaMarre: High performance laser research. Rept. AD 840913, American Opt. Corp. (June 1968)

    Google Scholar 

  14. W. Koechner: Appl. Opt. 9, 2548 (1970)

    Article  ADS  Google Scholar 

  15. K.B. Steinbruegge, T. Henningsen, R.H. Hopkins, R. Mazelsky, N.T. Melamed, E.P. Riedel, G.W. Roland: Appl. Opt. 11, 999 (1972)

    Article  ADS  Google Scholar 

  16. K.B. Steinbruegge, G.D. Baldwin: Appl. Phys. Lett. 25, 220 (1972)

    Article  ADS  Google Scholar 

  17. A. Stein: CW YAG laser techniques. Rept. AD 743979, US Army Electronics Command, Fort Monmouth, NJ (May 1972)

    Google Scholar 

  18. M.A. Karr: Appl. Opt. 10, 893 (1971)

    Article  ADS  Google Scholar 

  19. L.M. Osterink, J.D. Foster: Appl. Phys. Lett. 12, 128 (1968);

    Article  ADS  Google Scholar 

  20. N. Barnes, S.J. Scalise: Appl. Opt. 17, 1537 (1978)

    Article  ADS  Google Scholar 

  21. W.C. Scott, M. de Wit: Appl. Phys. Lett. 18, 3 (1971)

    Article  ADS  Google Scholar 

  22. W. Koechner, D.K. Rice: J. Opt. Soc. Am. 61, 758 (1971)

    Article  ADS  Google Scholar 

  23. S.D. Sims, A. Stein, C. Roth: Appl. Opt. 5, 621 (1966)

    Article  ADS  Google Scholar 

  24. R.L. Townsend, C.M. Stickley, A.D. Maio: Appl. Phys. Lett. 7, 94 (1965)

    Article  ADS  Google Scholar 

  25. H. Welling, C.J. Bickart, H.G. Andresen: IEEE J. QE-1, 223 (1965)

    Article  Google Scholar 

  26. G.D. Baldwin, E.P. Riedel: J. Appl. Phys. 38, 2726 (1967)

    Article  ADS  Google Scholar 

  27. A.P. Veduta, A.M. Leontovich, V.N. Smorchkov: Sov. Phys. JETP 21, 59 (1965)

    ADS  Google Scholar 

  28. S. Epstein: J. Appl. Phys. 38, 2715 (1967)

    Article  ADS  Google Scholar 

  29. A.Y. Cabezas, L.G. Komai, R.P. Treat: Appl. Opt. 5, 647 (1966)

    Article  ADS  Google Scholar 

  30. J.W. Carson: Dynamic optical properties of laser materials. Final Techn. Rept. No.P66–135, Office of Naval Research, Washington, DC (1966)

    Google Scholar 

  31. D.C. Burnham: Appl. Opt. 9, 1727 (1970)

    Article  ADS  Google Scholar 

  32. D. White, D. Gregg: Appl. Opt. 4, 1034 (1965)

    Article  ADS  Google Scholar 

  33. F.W. Quelle: Appl. Opt. 5, 633 (1966)

    Article  ADS  Google Scholar 

  34. E.P. Riedel, G.D. Baldwin: J. Appl. Phys. 38, 2720 (1967)

    Article  ADS  Google Scholar 

  35. E. Snitzer, C.G. Young: Lasers, ed. by A.K. Levine (Dekker, New York 1968) Vol. 2, p. 191

    Google Scholar 

  36. E. Matovich: The axial gradient laser. Proc. DOD Conf. on Laser Technology, San Diego, CA (1970) p. 311

    Google Scholar 

  37. M.K. Chun, J.T. Bischoff: IEEE J. QE-7, 200 (1971)

    Article  Google Scholar 

  38. K. Richter, W. Koechner: Appl. Phys. 3, 205 (1974)

    Article  ADS  Google Scholar 

  39. V.I. Danilovskaya, V.N. Zubchaninova: Temperature stresses forming in cylinders under the effect of a luminous flux. US Government Res. & Dev. Rept. 70, No.AD-704–020 (1970)

    Google Scholar 

  40. B.A. Ermakov, A.V. Lukin: Soy. Phys. 15, 1097 (1971)

    Google Scholar 

  41. S.D. Sims, A. Stein, C. Roth: Appl. Opt. 6, 579 (1967)

    Article  ADS  Google Scholar 

  42. R.F. Hotz: Appl. Opt. 12, 1834 (1973)

    Article  ADS  Google Scholar 

  43. T.J. Gleason, J.S. Kruger, R.M. Curnutt: Appl. Opt. 12, 2942 (1973)

    Article  ADS  Google Scholar 

  44. G. Benedetti-Michelangeli, S. Martelluci: Appl. Opt. 8, 1447 (1969)

    Article  ADS  Google Scholar 

  45. W. Rundle: Korad Division, Hadron, Inc., unpublished results

    Google Scholar 

  46. E.A. Teppo: Nd:YAG laser technology. NWC Techn. Memo 2534, Appendix C (1975); Techn. Note 4051–2 (1972), Naval Weapons Center, China Lake, CA

    Google Scholar 

  47. J.D. Foster, R.F. Kirk: Rept. NASA-CR-1771, Washington, DC (1971)

    Google Scholar 

  48. R.A. Kaplan: Conductive cooling of a ruby rod. Technical Note No. 109, TRG, Melville, NY (1964)

    Google Scholar 

  49. W.F. Hagen: Techn. Rept. AFAL-TR-73–111, Air Force Avionics Lab., Wright Patterns AFB, Ohio (1973)

    Google Scholar 

  50. W.F. Hagen, C.G. Young, J. Keefe, D.W. Cuff: Segmented Ndglass lasers. Proc. DOD Conf., San Diego, CA (1970) p. 363

    Google Scholar 

  51. E. Matovich, G.E. Meyers: 1KW axial gradient Nd:YAG laser. Final Rept. N00014–70-C-0406, ONR, Boston (1971)

    Google Scholar 

  52. M.M. Heil, D.L. Flannery: A review of axial gradient laser technology, Proc. DOD Conf., San Diego, Calif. (1970) p. 287

    Google Scholar 

  53. E. Matovich: Segmented ruby oscillator-amplifier. Rept. AFAL-TR-69–317, Air Force Avionics Lab, Wright Patterson AFB, Ohio (1970)

    Google Scholar 

  54. J.M. Eggleston, T.J. Kane, K. Kuhn, J. Unternahrer, R.L. Byer: IEEE J. 99920, 289 (1984);

    Article  Google Scholar 

  55. T.J. Kane, J.M. Eggleston, R.L. Byer: IEEE J. QE-21, 1195 (1985)

    Article  Google Scholar 

  56. W.S. Martin, J.P. Chernoch: US Patent no. 3, 633, 126 (January 1972)

    Google Scholar 

  57. J.P. Chernoch, W.S. Martin, J.C. Almasi: Performance characteristics of a face-pumped, face-cooled laser, the mini-FPL. Tech. Rept. AFAL-TR-71–3, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1971)

    Google Scholar 

  58. W.B. Jones, L.M. Goldman, J.P. Chernoch, W.S. Martin: IEEE J. QE-8, 534 (1972);

    Article  Google Scholar 

  59. G.J. Hulme, W.B. Jones: Total internal reflection face pumped laser, Proc. Soc, Photo-Optical Instr. Eng. 69, 38 (1975)

    Google Scholar 

  60. J.M. Eggleston, T.J. Kane, T. Unternahrer, R.L. Byer: Opt. Lett. 9, 405 (1982) 7.58 J.M. Eggleston, G.F. Albrecht, R.A. Petr, J.F. Zumdieck: IEEE J. QE-22, 2092 (1986)

    Google Scholar 

  61. M. Reed, K. Kuhn, J. Unternahrer, R.L. Byer: IEEE J. QE-21, 412 (1985)

    Article  Google Scholar 

  62. T. Henningsen: Evaluation of CaLaSOAP:Nd for use in a one joule, 30 Hz laser designator. Res. Rep. 72-ICI-LAMAT-RI, Westinghouse Research Lab., Pittsburgh, PA (1972)

    Google Scholar 

  63. J.P. Chernoch: High power Nd-YAG Mini-FPL, Final report AFAL-TR75–93, Air Force Avionics Lab., WPAFB, Ohio (1975)

    Google Scholar 

  64. T.J. Kane, R.C. Eckardt, R.L. Byer. IEEE J. QE-19, (1983)

    Google Scholar 

  65. Y.S. Liu, W.B. Jones, J.P. Chernoch: Recent developmetn of high power visible laser sources employing solid state slab lasers and nonlinear harmonic conversion techniques. Tech. Rep., 81-CRD104, General Electric, Schenactady, NY (1981)

    Google Scholar 

  66. G.F. Albrecht, J.M. Eggleston, J.J. Ewing: IEEE J. QE-22, 2099 (1986)

    Article  Google Scholar 

  67. D.L. Begley, D.J. Krebs, M. Ross: Proc. SPIE 742, 42 (1986)

    Google Scholar 

  68. Diode pumped slab laser study - risk reduction phase. Final Rept. N 6600183-C-0072, McDonnell Douglas (1986)

    Google Scholar 

  69. W.B. Jones: Laser Focus/Electro Optics 107 (1983)

    Google Scholar 

  70. S. Basu, T.J. Kane, R.L. Byer. IEEE J. QE-22, 2052 (1986)

    Article  Google Scholar 

  71. D.C. Brown, K.L. Kotik: CLEO’84 (Anaheim, CA) paper WE4 D.C. Brown: CLEO’84 (Anaheim, CA) paper WE5

    Google Scholar 

  72. T.C. Almasi, W.S. Martin: US Patent. 3, 631, 362 (December 1971)

    Google Scholar 

  73. D.C. Brown, J.M. Kelly, J.A. Abate: IEEE J. QE-17, 1755 (1981)

    Article  Google Scholar 

  74. J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis: Appl. Opt. 20, P351 (1981);

    Article  ADS  Google Scholar 

  75. D.C. Brown, J.A. Abate, L. Lund, J. Waldbillig: Appl. Opt. 20, 1588 (1981)

    Article  ADS  Google Scholar 

  76. D.C. Brown: High Peak Power Nd:glass Laser Systems, Springer Ser. Opt. Sci., Vol. 25 ( Springer, Berlin, Heidelberg 1981 )

    Google Scholar 

  77. S.R. Bowman, L.M. Ding, C.O. Alley. CLEO’87 (Baltimore, MA)

    Google Scholar 

  78. J.H. Kelly, D.L. Smith, J.C. Lee, S.D. Jacobs, D.J. Smith, J.C. Lambropoulos: CLEO Conf. 1987

    Google Scholar 

  79. D.C. Brown, K.L. Kotik, J. Kuper: Tech. Digest, CLEO’84 (Anaheim, CA) Paper WE3

    Google Scholar 

  80. D.C. Brown, K. Lee, G. Linford: J. Opt. Soc. Am. 73, 1970A (1983)

    ADS  Google Scholar 

  81. W.W. Simmons, D.R. Speck, L.J. Hunt Appl. Opt. 17, 999 (1978)

    ADS  Google Scholar 

  82. W.E. Martin, J.B. Trenholme, G.T. Linford, S.M. Yarema, C.A. Hurley: IEEE J. QE-17, 1744 (1981)

    Article  Google Scholar 

  83. Lawrence Livermore National Lab., Medium Average Power Solid State Laser Technical Information Seminar, October 29, 1985, Livermore, Calif.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koechner, W. (1988). Heat Removal. In: Solid-State Laser Engineering. Springer Series in Optical Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-15143-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-15143-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-15145-7

  • Online ISBN: 978-3-662-15143-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics