Skip to main content

Specimen Damage by Electron Irradiation

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

Most of the energy dissipated in energy losses is converted into heat. The rise in specimen temperature can be limited by keeping the illuminated area small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.G. Stojanowa, E.M. Belawzewa: Experimentelle Untersuchung der thermischen Einwirkung des Elektronenstrahls auf das Objekt im Elektronenmikroskop, in [Ref.1.52, Vol.1, p.100]

    Google Scholar 

  2. M. Watanabe, T. Someya, Y. Nagahama: Temperature rise of specimen due to electron irradiation, in [Ref.1.53, Vol.1, p.A-8]

    Google Scholar 

  3. D.D. Thornburg, C.M. Wayman: Specimen temperature increases during transmission electron microscopy. Phys. Status Solidi A 15, 449 (1973)

    Article  ADS  Google Scholar 

  4. L. Reimer, R. Christenhusz, J. Ficker: Messung der Objekttemperatur im Elektronenmikroskop mittels Elektronenbeugung. Naturwissenschaften 47, 464 (1960)

    Article  ADS  Google Scholar 

  5. M. Fukamachi, T. Kikuchi: Application of the critical voltage effect to the measurement of temperature increase of metal foils during the observation with HVEM. Jpn. J. Appl. Phys. 14, 587 (1975)

    Article  ADS  Google Scholar 

  6. A. Winkelmann: Messung der Temperaturerhöhung der Objekte bei Elektronen-Interferenzen. Z. Angew. Phys. 8, 218 (1956)

    Google Scholar 

  7. E. Gutter, H. Mahl: Einflu einer periodischen Objelçtbeleuchtung auf die elektronenmikroskopische Abbildung. Optik 17, 233 (1960)

    Google Scholar 

  8. G. Honjo, N. Kitamura, K. Shimaoka, K. Mihama: Low temperature specimen method for electron diffraction and electron microscopy. J. Phys. Soc. Jpn. 11, 527 (1956)

    Article  ADS  Google Scholar 

  9. L. Reimer, R. Christenhusz: Reversible Temperaturindikatoren in Form von Aufdampfschichten zur Ermittlung der Objekttemperatur im Elektronenmikroskop. Naturwissenschaften 48, 619 (1961)

    Article  ADS  Google Scholar 

  10. L. Reimer, R. Christenhusz: Experimenteller Beitrag zur Objekterwärmung im Elektronenmikroskop. Z. Angew. Phys. 14, 601 (1962)

    Google Scholar 

  11. S. Yamaguchi: Über die Temperaturerhöhung der Objekte im Elektronenmikroskop. Z. Angew. Phys. 8, 221 (1956)

    Google Scholar 

  12. S. Leisegang: Zur Erwärmung elektronenmikroskopischer Objekte bei kleinem Strahlquerschnitt, in [Ref.1.51, p.176]

    Google Scholar 

  13. B. Gale, K.F. Hale: Heating of metal foils in an electron microscope. Brit. J. Appl. Phys. 12, 115 (1961)

    Article  ADS  Google Scholar 

  14. K. Kanaya: The temperature distribution along a rod-specimen in the electron microscope. J. Electron Microsc. 4, 1 (1956)

    Article  Google Scholar 

  15. P. Balk, J. Ross Colvin: Note on an indirect measurement of object temperature in electron microscopy. Kolloid Z. 176, 141 (1961)

    Article  Google Scholar 

  16. L. Reimer: Zur Zersetzung anorganischer Kristalle im Elektronenmikroskop. Z. Naturforsch. A 14, 759 (1959)

    ADS  Google Scholar 

  17. L. Reimer: Ein experimenteller Beitrag zur Thermokraft dünner Schichten. Z. Naturforsch. A 12, 525 (1957)

    ADS  Google Scholar 

  18. D. Thornburg, C.M. Wayman: Thermoelectric power of vacuum evaporated Au-Ni thin film thermocouples. J. Appl. Phys. 40, 3007 (1969)

    Article  ADS  Google Scholar 

  19. G.R. Piercy, R.W. Gilbert, L.M. Howe: A liquid helium cooled finger for the Siemens electron microscope. J. Sci. Instr. 40, 487 (1963)

    Article  ADS  Google Scholar 

  20. G.M. Parkinson, W. Jones, J.M. Thomas: Electron microscopy at liquid helium temperatures, in [Ref.1.43]

    Google Scholar 

  21. S. Kritzinger, E. Ronander: Local beam heating in metallic electron microscope specimens. J. Microsc. 102, 117 (1974)

    Article  Google Scholar 

  22. K. Kanaya: The temperature distribution of specimens on thin substrates supported on a circular opening in the electron microscope. J. Electron Microsc. 3, 1 (1955)

    Google Scholar 

  23. L. Reimer, R. Christenhusz: Determination of specimen temperature. Lab. Invest. 14, 1158 (1965)

    Google Scholar 

  24. R. Christenhusz, L. Reimer: Schichtdickenabhängigkeit der Wärmeerzeugung durch Elektronen -bestrahlung im Energiebereich zwischen 9 und 100 keV. Z. Angew. Phys. 23, 397 (1967)

    Google Scholar 

  25. S. Leisegang: Elektronenmikroskope, in Handbuch der Physik, Vol. 33 ( Springer, Berlin, Göttingen 1956 ) p. 396

    Google Scholar 

  26. V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films II Range-energy relations. Br. J. Appl. Phys. 15, 1283 (1964)

    Article  ADS  Google Scholar 

  27. A. Brockes: Zur Objekterwärmung im Elektronenmikroskop. Kolloid Z. 158, 1 (1958)

    Article  Google Scholar 

  28. R. Christenhusz, L. Reimer: Wärmeleitfähigkeit elektronenmikroskopischer Trägerfolien. Naturwissenschaften 55, 439 (1968)

    Article  ADS  Google Scholar 

  29. E. Knapek, J. Dubochet: Beam damage to organic material is considerably reduced in cryo-electron microscopy. J. Mol. Biol. 141, 147 (1980)

    Article  Google Scholar 

  30. I. Dietrich, F. Fox, H.G. Heide, E. Knapek, R. Weyl: Radiation damage due to knock-on processes on carbon foils cooled to liquid helium temperature. Ultramicroscopy 3, 185 (1978)

    Article  Google Scholar 

  31. Y. Talmon, E.L. Thomas: Temperature rise and sublimation of water from thin frozen hydrated specimens in cold stage microscopy, in Scanning Electron Microscopy 1977/I, ed. by O. Johari ( IIT Research Inst., Chicago, IL 1977 ) p. 265

    Google Scholar 

  32. Y. Talmon, E.L. Thomas: Beam heating of a moderately thick cold stage specimen in the SEM/STEM. J. Microsc. 111, 151 (1977)

    Article  Google Scholar 

  33. L.G. Pittaway: The temperature distribution in the foil and semi-infinite argets bombarded by an electron beam. Brit. J. Appl. Phys. 15, 967 (1964)

    Article  ADS  Google Scholar 

  34. H. Kohl, H. Rose, H. Schnabl: Dose-rate effect at low temperatures in FBEM nd STEM due to object-heating. Optik 58, 11 (1981)

    Google Scholar 

  35. L. Reimer: Irradiation changes in organic and inorganic objects. Lab. Invest. 14, 1082 (1965)

    Google Scholar 

  36. L. Reimer: Review of the radiation damage problem of organic specimens in electron microscopy, in [Ref.1.12, p.231]

    Google Scholar 

  37. K. Stenn, G.F. Bahr: Specimen damage caused by the beam of the transmission electron microscope, a correlative consideration. J. Ultrastruct. Res. 31, 526 (1970)

    Article  Google Scholar 

  38. D.T. Grubb, A. Keller: Beam-induced radiation damage in polymers and its effect on the image formed in the electron microscope, in Electron Microscopy 1972 (IoP, London 1972 ) p. 554

    Google Scholar 

  39. R.M. Glaeser: Radiation damage and biological electron microscopy, in [Ref.1.12, p.205]

    Google Scholar 

  40. E. Zeitler (ed.). Cryomicroscopy and Radiation Damage (North-Holland, Amsterdam 1982), published also in Ultramicroscopy 10, 1–178 (1982); further conference report in Ultramicroscopy 14, 163–315 (1984)

    Google Scholar 

  41. M.S. Isaacson: Inelastic scattering and beam damage of biological molecules, in [Ref.1.12, p.247]

    Google Scholar 

  42. D.F. Parsons: Radiation damage in biological materials, in [Ref.1.12, p.259]

    Google Scholar 

  43. M.S. Isaacson: Specimen damage in the electron microscope, in Principles nd Techniques of Electron Microscopy, Vol. 7, ed. by M.A. Hayat ( Van ostrand-Reinhold, New York 1977 ) p. 1

    Google Scholar 

  44. R.M. Glaeser, K.A. Taylor: Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112, 127 (1978)

    Article  Google Scholar 

  45. V.E. Cosslett: Radiation damage in the high resolution electron microscopy of biological materials: a review. J. Microsc. 113, 113 (1978)

    Article  Google Scholar 

  46. Z.M. Bacq, P. Alexander: Fundamentals of Radiobiology ( Pergamon, Oxford 1961 )

    Google Scholar 

  47. R.D. Bolt, J.G. Carroll (eds.): Radiation Effects on Organic Materials ( Academic, New York 1963 )

    Google Scholar 

  48. A. Charlesby: Atomic Radiation and Polymers ( Pergamon, Oxford 1960 )

    Google Scholar 

  49. A.J. Swallow: Radiation Chemistry of Organic Compounds ( Pergamon, Oxford 1960 )

    Google Scholar 

  50. H. Dertinger, H. Jung: Molekulare Strahlenbiologie (Springer, Berlin, Heidelberg 1968 )

    Google Scholar 

  51. H.C. Box: Cryoprotection of irradiated specimens, in [Ref.1.12, p.279]

    Google Scholar 

  52. J. Hüttermann:Solid-state radiation chemistry of DNA and its constituents. Ultramicroscopy 10, 25 (1982)

    Article  Google Scholar 

  53. R. Spehr, H. Schnabl: Zur Deutung der unterschiedlichen StrahlenEmpfindlichkeit organischer Moleküle: Z. Naturforsch. A 28, 1729 (1973)

    ADS  Google Scholar 

  54. H. Schnabl: Does removal of hydrogen change the electron energy-loss spectra of DNA bases? Ultramicroscopy 5, 147 (1980)

    Article  Google Scholar 

  55. G.M. Parkinson, M.J. Goringe, W. Jones, W. Rees, J.M. Thomas, J.O. Williams: Electron induced damage in organic molecular crystals: Some observations and theoretical considerations, in Development in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 315

    Google Scholar 

  56. L. Reimer, J. Spruth: Interpretation of the fading of diffraction patterns from organic substances irradiated with 100 keV electrons at 10–300 K. Ultramicroscopy 10, 199 (1982)

    Article  Google Scholar 

  57. T. Gejvall, G. Löfroth: Radiation induced degradation of some crystalline amino acids. Radiat. Eff. 25, 187 (1975)

    Article  Google Scholar 

  58. J. Vesely: Electron beam damage of amorphous synthetic polymers. Ultra-microscopy 14, 279 (1984)

    Article  MathSciNet  Google Scholar 

  59. L. Reimer: Methods of detection of radiation damage in electron microscopy. Ultramicroscopy 14, 291 (1984)

    Article  Google Scholar 

  60. L. Reimer: Quantitative Untersuchung zur Massenabnahme von Einbettungsmitteln (Methacrylat, Vestopal und Araldit) unter Elektronenbeschu. Z. Naturforsch. B 14, 566 (1959)

    Google Scholar 

  61. W. Lippert: Uber thermisch bedingte Veränderungen an dünnen Folien im Elektronenmikroskop. Z. Naturforsch. A 15, 612 (1960)

    ADS  Google Scholar 

  62. G.F. Bahr, F.B. Johnson, E. Zeitler: The elementary composition of organic objects after electron irradiation. Lab. Invest. 14, 1115 (1965)

    Google Scholar 

  63. K. Ramamurti, A.V. Crewe, M.S. Isaacson: Low temperature mass loss of 1-phenylalanine and 1-tryptophan upon electron irradiation. Ultramicroscopy 1, 156 (1975)

    Article  Google Scholar 

  64. R. Freeman, K.R. Leonard: Comparative mass measurement of biological macromolecules by STEM. J. Microsc. 122, 175 (1981)

    Article  Google Scholar 

  65. W. Lippert: Über Massendickeveränderungen bei Kunststoffen im Elektronenmikroskop. Optik 19, 145 (1962)

    Google Scholar 

  66. G. Siegel: Der Einflu tiefer Temperaturen auf die Strahlenschädigung von organischen Kristallen durch 100 keV-Elektronen. Z. Naturforsch. A 27, 325 (1972)

    ADS  Google Scholar 

  67. A. Brockes: Über Veränderungen des Aufbaus organischer Folien durch Elektronen-Bestrahlung. Z. Phys. 149, 353 (1957)

    Article  ADS  Google Scholar 

  68. V.E. Cosslett: The effect of the electron beam on thin sections, in Proc. Europ. Reg. Conf. on Electron Microscopy, Vol. 2, ed. by A.L. Houwink, B.J. Spit ( Nederlandse Vereniging voor Electronenmicroscopie, Delft 1960 ) p. 678

    Google Scholar 

  69. L. Reimer: Interferenzfarben von Methacrylatschnitten und ihre Veränderung unter Elektronenbeschu. Photogr. Wiss. 9, 25 (1960)

    Google Scholar 

  70. L. Reimer: Veränderungen organischer Kristalle unter Beschu mit 60 keV lektronen im Elektronenmikroskop. Z. Naturforsch. A 15, 405 (1960)

    ADS  Google Scholar 

  71. K. Kobayashi, K. Sakaoku: Radiation changes in organic polymers at various accelerating voltages. Lab. Invest. 14, 1097 (1965)

    Google Scholar 

  72. H. Orth, E.W. Fischer: Änderungen der Gitterstruktur hochpolymerer Einkristalle durch Bestrahlung im Elektronenmikroskop. Makromol. Chem. 88, 188 (1965)

    Article  Google Scholar 

  73. A. Howie, F.J. Rocca, U. Valdrè: Electron beam ionization damage processes in p-therphenyl. Phil. Mag. B 52, 751 (1982)

    Article  Google Scholar 

  74. L. Reimer, J. Spruth: Information about radiation damage of organic molecules by electron diffraction. J. Microsc. Spectr. Electron. 3, 579 (1978)

    Google Scholar 

  75. W.R.K. Clark, J.N. Chapman, A.M. MacLeod, R.P. Ferrier: Radiation damage mechanism in copper phthalocyanine and its chlorinated derivatives. Ultramicroscopy 5, 195 (1980)

    Article  Google Scholar 

  76. N. Uyeda, T. Kobayashi, E. Suito, Y. Harada, M. Watanabe: Molecular image resolution in electron microscopy. J. Appl. Phys. 43, 5181 (1972)

    Article  ADS  Google Scholar 

  77. T. Kobayashi, Y. Fujiyoshi, K. Ishizuka, N. Uyeda: Structure determination and atom identification on polyhalogenated molecule, in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. van Landuyt (7th Europ. Reg. Congr. on Electron Microscopy Foundation, Leiden 1980 ) p. 158

    Google Scholar 

  78. Y. Murata: Studies of radiation damage mechanisms by optical diffraction analysis and high resolution image, in [Ref.1.57, Vol.3, p.49]

    Google Scholar 

  79. J.R. Fryer: Radiation damage in organic crystalline films. Ultramicroscopy 14, 277 (1984)

    Google Scholar 

  80. D.J. Smith, J.R. Fryer, R.A. Camps: Radiation damage and structure studies: halogenated phthalocyanines. Ultramicroscopy 19, 279 (1986)

    Article  Google Scholar 

  81. D. van Dyck, M. Wilkens: Aspects of electron diffraction from radiationdamaged crystals. Ultramicroscopy 14, 237 (1984)

    Article  Google Scholar 

  82. R.M. Glaeser: Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466 (1971)

    Article  Google Scholar 

  83. D.T. Grubb, G.W. Groves: Rate of damage of polymer crystals in the electron microscope: dependence on temperature and beam voltage. Philos. Mag. 24, 815 (1971)

    Article  ADS  Google Scholar 

  84. L.E. Thomas, C.J. Humphreys, W.R. Duff, D.T. Grubb: Radiation damage of polymers in the million volt electron microscope. Radiat. Eff. 3, 89 (1970)

    Article  ADS  Google Scholar 

  85. A.V Crewe, M. Isaacson, D. Jonson: Electron beam damage in biological molecules, in Proc. 28th Ann. Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1970 ) p. 264

    Google Scholar 

  86. L. Reimer: Veränderungen organischer Farbstoffe im Elektronenmikroskop. Z. Naturforsch. B 16, 166 (1961)

    Google Scholar 

  87. N. Uyeda, T. Kobayashi, M. Ohara, M. Watanabe, T. Taoka, Y. Harada: Reduced radiation damage of halogenated copper-phthalocyanine, in Electron Microscopy 1972 ( IoP, London 1972 ) p. 566

    Google Scholar 

  88. W. Baumeister, U.P. Fringeli, M. Hahn, F. Kopp, J. Seredynski: Radiation damage in tripalmitin layers studied by means of infrared spectroscopy and electron microscopy. Biophys. J. 16, 791 (1976)

    Article  Google Scholar 

  89. W. Baumeister, J. Seredynski: Radiation damage to proteins: changes on the primary and secondary structure level, in [Ref.1.57, Vol.3, p.40]

    Google Scholar 

  90. W. Baumeister, M. Hahn, J. Seredynski, L.M. Herbertz: Radiation damage of proteins in the solid state: changes of amino acid composition in catalase. Ultramicroscopy 1, 377 (1976)

    Article  Google Scholar 

  91. M. Isaacson: Electron beam induced damage of organic solids: implications or analytical electron microscopy. Ultramicroscopy 4, 193 (1979)

    Article  Google Scholar 

  92. R.F. Egerton: Chemical measurements of radiation damage in organic samples at and below room temperature. Ultramicroscopy 5, 521 ( 1980 ]

    Google Scholar 

  93. R.F. Egerton: Organic mass loss at 100 K and 300 K. J. Microsc. 126, 95 (1982)

    Article  Google Scholar 

  94. M. Misra, R.F. Egerton: Assessment of electron irradiation damage to biomolecules by electron diffraction and EELS. Ultramicroscopy 15, 337 (1984)

    Article  Google Scholar 

  95. H. Shuman, A.V. Somlyo, P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976)

    Article  Google Scholar 

  96. T.A. Hall, B.L. Gupta: Beam-induced loss of organic mass under electron microscope conditions. J. Microsc. 100, 177 (1974)

    Article  Google Scholar 

  97. P. Bernsen, L. Reimer, P.F. Schmidt: Investigation of electron irradiation damage of evaporated organic films by laser microprobe mass analysis. Ultramicroscopy 7, 197 (1981)

    Article  Google Scholar 

  98. S.H. Faraj, S.M. Salih: Spectroscopy of electron irradiated polymers in electron microscopy. Radiat. Eff. 55, 149 (1981)

    Article  Google Scholar 

  99. P.K. Haasma, M. Parikh: A tunneling spectroscope study of molecular degradation due to electron irradiation. Science 188, 1304 (1975)

    Article  ADS  Google Scholar 

  100. M.J. Richardson, K. Thomas: Aspects of HVEM of polymers, in Electron Microscopy 1972 ( IoP, London 1972 ) p. 562

    Google Scholar 

  101. S.M. Salih, V.E. Cosslett: Some factors influencing radiation damage in inorganic substances, in [Ref.1.56, Vol.2, p.670]

    Google Scholar 

  102. J. Dubochet: Carbon loss during irradiation of T4 bacteriophages and E. oli bacteria in electron microscopes. J. Ultrastruct. Res. 52, 276 (1975)

    Article  Google Scholar 

  103. K.H. Downing: Temperature dependence of the critical electron exposure for ydrocarbon monolayers. Ultramicroscopy 11, 229 (1983)

    Article  Google Scholar 

  104. L. Zuppiroli, N. Housseau, L. Fooro, J.P. Guillot, J. Pelissier: Fading of the Bragg spots in irradiated organic conductors: temperature and composition effects. Ultramicroscopy 19, 325 (1986)

    Article  Google Scholar 

  105. E. Knapek: Properties of organic specimens and their supports at 4 K under irradiation in an electron microscope. Ultramicroscopy 10, 71 (1982)

    Article  Google Scholar 

  106. D.F. Parsons, V.R. Matricardi, R.C. Moretz, J.N. Turner: Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161 (1974)

    Google Scholar 

  107. H.G. Heide, S. Grund: Eine Tiefkühlkette zum Überführen von wasserhaltigen biologischen Objekten ins Elektronenmikroskop. J. Ultrastruct. Res. 48, 259 (1974)

    Article  Google Scholar 

  108. K.A. Taylor, R.M. Glaeser: Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448 (1976)

    Article  Google Scholar 

  109. T.E. Hutchinson, D.E. Johnson, A.P. Mackenzie: Instrumentation for direct observation of frozen hydrated specimens in the electron microscope. Ultra-microscopy 3, 315 (1978)

    Article  Google Scholar 

  110. J. Lepault, J. Dubochet: Beam damage and frozen-hydrated specimens, in [Ref.1,59, Vol.1, p.25]

    Google Scholar 

  111. Y. Talmon: Radiation damage to organic inclusions in ice. Ultramicroscopy 14, 305 (1984)

    Article  Google Scholar 

  112. J.R. Fryer, C.H. McConnell: Effect of temperature on radiation damage to aromatic organic molecules. Ultramicroscopy 40, 163 (1992)

    Article  Google Scholar 

  113. S.M. Salih, V.E. Cosslett: Reduction in electron irradiation damage to or- ganic compounds by conducting coatings. Philos. Mag. 30, 225 (1974)

    Article  ADS  Google Scholar 

  114. J.R. Fryer, F. Holland: The reduction of radiation damage in the electron microscope. Ultramicroscopy 11, 67 (1983)

    Article  Google Scholar 

  115. A. Rose: Television pickup tubes and the problem of noise. Adv. Electron. 1, 131 (1948)

    Google Scholar 

  116. R.C. Williams, H.W. Fischer: Electron microscopy of tobacco mosaic virus nder conditions of minimal beam exposure. J. Mol. Biol. 52, 121 (1970)

    Article  Google Scholar 

  117. M. Ohtsuki, E. Zeitler: Minimal beam exposure with a field emission source. ltramicroscopy 1, 163 (1975)

    Google Scholar 

  118. K.H. Herrmann, J. Menadue, H.T. Pearce-Percy: The design of compact deflection coils and their application to a minimum exposure system, in Electron Microscopy 1976, Vol. 1, ed. by D.G. Brandon ( Tal Int’l, Jerusalem 1976 ) p. 342

    Google Scholar 

  119. Y. Fujiyoshi, T. Kobayashi, K. Ishizuka, N. Uyeda, Y. Ishida, Y. Harada: A new method for optimal-resolution electron microscopy of radiation-sensitive specimens. Ultramicroscopy 5, 459 (1980)

    Google Scholar 

  120. S.B. Hayward, R.M. Glaeser: Radiation damage of purple membrane at low temperatures. Ultramicroscopy 4, 201 (1979)

    Article  Google Scholar 

  121. W. Chiu, R.M. Glaeser: Evaluation of photographic emulsion for low-exposure imaging, in [Ref.1. 43, p. 194

    Google Scholar 

  122. M. Kessel, J. Frank, W. Goldfarb: Low-dose microscopy of individual macromolecules, in [Ref.1.43, p.154]

    Google Scholar 

  123. D.L. Dorset, F. Zemlin: Structural changes in electron iradiated paraffin crystals at =15 K and their relevances to lattice imaging experiments. Ultramicroscopy 17, 229 (1985)

    Article  Google Scholar 

  124. W. Kunath, K. Weiss, H. Sack-Kongehl, M. Kessel, E. Zeitler: Time-resolved low-dose microscopy of glutamine synthease molecules. Ultramicrocopy 13, 241 (1984)

    Article  Google Scholar 

  125. D.W. Pashley, A.E.B. Presland: Ion damage to metal films inside an electron microscope. Philos. Mag. 6, 1003 (1961)

    Article  ADS  Google Scholar 

  126. M.N. Kabler, T.T. Williams: Vacancy-interstitial pairs production via electron-hole recombination in halide crystals. Phys. Rev. B 18, 1948 (1978)

    Article  ADS  Google Scholar 

  127. H. Strunk: High voltage transmission electron microscope of the dislocation arrangement in plastically deformed NaCl crystals, in [Ref.1.78, p.285]

    Google Scholar 

  128. L.W. Hobbs, A.E. Hughes, D. Pooley: A study of interstitial clusters in irradiated alkali halides using direct electron microscopy. Proc. Roy. Soc. A (London) 332, 167 (1973)

    Article  ADS  Google Scholar 

  129. L.W. Hobbs: Radiation effects in the electron microscopy of beam-sensitive inorganic solids, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 287

    Google Scholar 

  130. L.W. Hobbs: Radiation damage in electron microscopy of inorganic solids. Ultramicroscopy 3, 381 (1979)

    Article  Google Scholar 

  131. T. Evans: Decomposition of calcium fluoride and strontium fluoride in the electron microscope. Philos. Mag. 8, 1235 (1963)

    Article  ADS  Google Scholar 

  132. L.E. Murr: TEM study of crystal defects in natural fluorite. Phys. Status Solidi A 22, 239 (1974)

    Article  ADS  Google Scholar 

  133. J.H. Ahn, D.R. Feacor, E.J. Essene: Cation-diffusion-induced characteristic beam damage in TEM images of micas. Ultramicroscopy 19, 375 (1986)

    Article  Google Scholar 

  134. R.D. Baeta, K.H.G. Ashbee: Electron irradiation damage in synthetic quartz, in Developments in Electron Microscopy and Analysis, ed. by J. A. Venables ( Academic, London 1976 ) p. 307

    Google Scholar 

  135. Y. Yokota, H. Hashimoto, T. Yanaguchi: Electron beam irradiation of natural zeolites at low and room temperature. Ultramicroscopy 54, 207 (1994)

    Article  Google Scholar 

  136. E.D. Kater: Mechanism of decomposition of dolomite in the electron microscope. Ultramicroscopy 18, 241 (1985)

    Article  Google Scholar 

  137. D.J. Smith: Atomic resolution studies of surface structure and reactions, in [Ref.1.59, Vol.2, p.929]

    Google Scholar 

  138. R.F. Egerton, P.A. Crozier, P. Rice: EELS and chemical damage. Ultramicroscopy 23, 305 (1987)

    Article  Google Scholar 

  139. H. Sauer, R. Brydson, P.N. Rowley, W. Engel, J.M. Thomas: Determination of coordinations and coordination-specific site occupancies by EELS: an investigation of boron-oxygen compounds. Ultramicroscopy 49, 198 (1993)

    Article  Google Scholar 

  140. L.A.J. Garvie, A.J. Craven: Electron-beam-induced reduction of Mn4+ in manganese oxides as revealed by parallel EELS. Ultramicroscopy 59, 83 (1994)

    Article  Google Scholar 

  141. M.J. Makin: Atom displacment radiation damage in electron microscopes, in [Ref.1.57, Vol.3, p.330]

    Google Scholar 

  142. M. Wilkens, K. Urban: Studies of radiation damage in crystalline materials by means of high voltage electron microscopy, in [Ref.1.78, p.332]

    Google Scholar 

  143. K. Urban: Radiation damage in inorganic materials in the electron microscope, in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. van Landuyt (7th Europ. Congr. Electron Microscopy Foundation, Leiden 1980 ) p. 188

    Google Scholar 

  144. V.E. Cosslett: Radiation damage by electrons, with special reference to the knock-on process, in Electron Microscopy and Analysis 1979, ed. by T. Mulvey ( IoP, London 1979 ) p. 177

    Google Scholar 

  145. M. Kiritani, T. Yoshiie, E. Ishida, S. Kojima, Y. Satoh: In-situ electron adiation damage study of materials by HVEM, in [Ref.1.59, Vol.2, p.1089]

    Google Scholar 

  146. M. Wilkens: Radiation damage in crystalline materials, displacement cross ections and threshold energy surfaces, in [Ref.1.80, p.475]

    Google Scholar 

  147. N. Yoshida, K. Urban: A study of the anisotropy of the displacement threshold energy in copper by means of a new high-resolution technique, in [Ref.1.80, p.493]

    Google Scholar 

  148. W.E. King, K.L. Merkle, M. Meshii: Study of the anisotropy of the threshold energy in copper using in-situ electrical resistivity measurements in the HVEM, in [Ref.1.81, p.212]

    Google Scholar 

  149. M.O. Ruault: In situ study of radiation damage in thin foils of gold by HVEM. Philos. Mag. 36, 835 (1977)

    Article  ADS  Google Scholar 

  150. L.E. Thomas: The diffraction dependence of electron damage in a HVEM. Rad. Eff. 5, 183 (1970)

    Article  ADS  Google Scholar 

  151. N. Yoshida, K. Urban: Electron diffraction channelling and its effect on displacement damage formation, in [Ref.1.80, p.485]

    Google Scholar 

  152. J.J Hren: Barriers of AEM: contamination and etching, in [Ref.1.66, p.481]

    Google Scholar 

  153. L. Reimer, M. Wächter: Contribution to the contamination problem in TEM. Ultramicroscopy 3, 169 (1978)

    Article  Google Scholar 

  154. H.G. Heide: Zur Vorevakuierung von Photomaterial für Elektronenmikroskope. Z. Angew. Phys. 19, 348 (1965)

    Google Scholar 

  155. A.E. Ennos, The sources of electron-induced contamination in the electron microscope. Brit. J. Appl. Phys. 5, 27 (1954)

    Article  ADS  Google Scholar 

  156. S. Leisegang: fiber Versuche in einer stark gekühlten Objektpatrone, in [Ref.1.51, p.184]

    Google Scholar 

  157. H.G. Heide: Die Objektverschmutzung im Elektronenmikroskop and das Problem der Strahlenschädigung durch Kohlenstoffabbau. Z. Angew. Phys. 15, 116 (1963)

    Google Scholar 

  158. H.G. Heide: Die Objektraumkühlung im Elektronenmikroskop. Z. Angew. Phys. 17, 73 (1964)

    ADS  Google Scholar 

  159. J.T Fourie: The controlling parameter in contamination of specimens in electron microscopes. Optik 44, 11 (1975)

    Google Scholar 

  160. K.H. Müller: Elektronen-Mikroschreiber mit geschwindigkeitsgesteuerter Strahlführung. Optik 33, 296 (1971)

    Google Scholar 

  161. G. Love, V.D. Scott, N.M.T. Dennis, L. Laurenson: Sources of contaminants in electron optical equipment. Scanning 4, 32 (1981)

    Article  Google Scholar 

  162. M.T. Browne, P. Charalambous, R.E. Burge: Uses of contamination in TEM projection electron lithography, in Developments in Electron Microscopy and Analysis, ed. by M.J. Goringe (IoP, London 1981 ) p. 47

    Google Scholar 

  163. P. Hirsch, M. Kässens, M. Püttmann, L. Reimer: Contamination in a SEM and the influence of specimen cooling. Scanning 16, 101 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1997). Specimen Damage by Electron Irradiation. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-14824-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-14824-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14826-6

  • Online ISBN: 978-3-662-14824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics